Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365143796> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4365143796 endingPage "113069" @default.
- W4365143796 startingPage "113069" @default.
- W4365143796 abstract "The choice of clothing is one of the main behavioral ways for people to adjust their thermal comfort outdoors. However, the choice of clothing is influenced by a combination of factors. The researchers need to use a method that deals with multivariable nonlinear problems to predict clothing insulation for outdoor people. Therefore, this study proposes an outdoor clothing prediction model based on the gray wolf optimization algorithm backpropagation neural network.This study starts with conditional assumptions. The clothing choice of outdoor residents is influenced by various climate parameters and gender. In a field experiment, outdoor environmental parameters were measured in real time, and respondents were surveyed using subjective questionnaires. The experimental data in the field and validation tests of the model confirmed this hypothesis. A total of 2883 valid samples were collected in this study, and an outdoor clothing prediction model that considered multiple nonlinear comprehensive effects was established. The results show that the accuracy of the proposed model is considerably higher than that of the traditional linear model. For the four sample groups, the root mean square prediction errors of the model were 9.57%, 2.96%, 4.87%, and 6.96%. The machine learning based outdoor clothing prediction model established in this paper not only provides a theoretical basis for outdoor thermal comfort evaluation but also provides a reference for research in other areas." @default.
- W4365143796 created "2023-04-13" @default.
- W4365143796 creator A5019315143 @default.
- W4365143796 creator A5029217808 @default.
- W4365143796 creator A5034997300 @default.
- W4365143796 creator A5048903694 @default.
- W4365143796 creator A5053518905 @default.
- W4365143796 creator A5055174519 @default.
- W4365143796 creator A5075603290 @default.
- W4365143796 date "2023-06-01" @default.
- W4365143796 modified "2023-09-27" @default.
- W4365143796 title "Outdoor clothing choice for different populations in cold regions: A clothing choice prediction model based on machine learning" @default.
- W4365143796 cites W1966131454 @default.
- W4365143796 cites W1978740799 @default.
- W4365143796 cites W1980694681 @default.
- W4365143796 cites W1999509830 @default.
- W4365143796 cites W2007752659 @default.
- W4365143796 cites W2011568797 @default.
- W4365143796 cites W2043033462 @default.
- W4365143796 cites W2050893611 @default.
- W4365143796 cites W2061438946 @default.
- W4365143796 cites W2064284878 @default.
- W4365143796 cites W2076882291 @default.
- W4365143796 cites W2089561975 @default.
- W4365143796 cites W2110633383 @default.
- W4365143796 cites W2132554361 @default.
- W4365143796 cites W2142041602 @default.
- W4365143796 cites W2271619251 @default.
- W4365143796 cites W2302040393 @default.
- W4365143796 cites W2560599441 @default.
- W4365143796 cites W2752881763 @default.
- W4365143796 cites W2770960187 @default.
- W4365143796 cites W2797382861 @default.
- W4365143796 cites W2801052353 @default.
- W4365143796 cites W2893836920 @default.
- W4365143796 cites W2920108441 @default.
- W4365143796 cites W2965276256 @default.
- W4365143796 cites W2970970881 @default.
- W4365143796 cites W2980500585 @default.
- W4365143796 cites W3007856130 @default.
- W4365143796 cites W3120896424 @default.
- W4365143796 cites W3162334116 @default.
- W4365143796 cites W3182450673 @default.
- W4365143796 cites W3203140674 @default.
- W4365143796 cites W3204450693 @default.
- W4365143796 cites W4220668650 @default.
- W4365143796 doi "https://doi.org/10.1016/j.enbuild.2023.113069" @default.
- W4365143796 hasPublicationYear "2023" @default.
- W4365143796 type Work @default.
- W4365143796 citedByCount "0" @default.
- W4365143796 crossrefType "journal-article" @default.
- W4365143796 hasAuthorship W4365143796A5019315143 @default.
- W4365143796 hasAuthorship W4365143796A5029217808 @default.
- W4365143796 hasAuthorship W4365143796A5034997300 @default.
- W4365143796 hasAuthorship W4365143796A5048903694 @default.
- W4365143796 hasAuthorship W4365143796A5053518905 @default.
- W4365143796 hasAuthorship W4365143796A5055174519 @default.
- W4365143796 hasAuthorship W4365143796A5075603290 @default.
- W4365143796 hasConcept C119857082 @default.
- W4365143796 hasConcept C127413603 @default.
- W4365143796 hasConcept C166957645 @default.
- W4365143796 hasConcept C205649164 @default.
- W4365143796 hasConcept C41008148 @default.
- W4365143796 hasConcept C44154836 @default.
- W4365143796 hasConcept C530175646 @default.
- W4365143796 hasConceptScore W4365143796C119857082 @default.
- W4365143796 hasConceptScore W4365143796C127413603 @default.
- W4365143796 hasConceptScore W4365143796C166957645 @default.
- W4365143796 hasConceptScore W4365143796C205649164 @default.
- W4365143796 hasConceptScore W4365143796C41008148 @default.
- W4365143796 hasConceptScore W4365143796C44154836 @default.
- W4365143796 hasConceptScore W4365143796C530175646 @default.
- W4365143796 hasLocation W43651437961 @default.
- W4365143796 hasOpenAccess W4365143796 @default.
- W4365143796 hasPrimaryLocation W43651437961 @default.
- W4365143796 hasRelatedWork W1975762184 @default.
- W4365143796 hasRelatedWork W1988438502 @default.
- W4365143796 hasRelatedWork W2371788697 @default.
- W4365143796 hasRelatedWork W2595326845 @default.
- W4365143796 hasRelatedWork W2748952813 @default.
- W4365143796 hasRelatedWork W2789902836 @default.
- W4365143796 hasRelatedWork W2888227313 @default.
- W4365143796 hasRelatedWork W2889453578 @default.
- W4365143796 hasRelatedWork W2899084033 @default.
- W4365143796 hasRelatedWork W596033692 @default.
- W4365143796 hasVolume "289" @default.
- W4365143796 isParatext "false" @default.
- W4365143796 isRetracted "false" @default.
- W4365143796 workType "article" @default.