Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365145108> ?p ?o ?g. }
- W4365145108 endingPage "13461" @default.
- W4365145108 startingPage "13407" @default.
- W4365145108 abstract "Abstract Sentiment Analysis (SA) of text reviews is an emerging concern in Natural Language Processing (NLP). It is a broadly active method for analyzing and extracting opinions from text using individual or ensemble learning techniques. This field has unquestionable potential in the digital world and social media platforms. Therefore, we present a systematic survey that organizes and describes the current scenario of the SA and provides a structured overview of proposed approaches from traditional to advance. This work also discusses the SA-related challenges, feature engineering techniques, benchmark datasets, popular publication platforms, and best algorithms to advance the automatic SA. Furthermore, a comparative study has been conducted to assess the performance of bagging and boosting-based ensemble techniques for social network SA. Bagging and Boosting are two major approaches of ensemble learning that contain various ensemble algorithms to classify sentiment polarity. Recent studies recommend that ensemble learning techniques have the potential of applicability for sentiment classification. This analytical study examines the bagging and boosting-based ensemble techniques on four benchmark datasets to provide extensive knowledge regarding ensemble techniques for SA. The efficiency and accuracy of these techniques have been measured in terms of TPR, FPR, Weighted F-Score, Weighted Precision, Weighted Recall, Accuracy, ROC-AUC curve, and Run-Time. Moreover, comparative results reveal that bagging-based ensemble techniques outperformed boosting-based techniques for text classification. This extensive review aims to present benchmark information regarding social network SA that will be helpful for future research in this field." @default.
- W4365145108 created "2023-04-13" @default.
- W4365145108 creator A5019556766 @default.
- W4365145108 creator A5032885393 @default.
- W4365145108 creator A5051197396 @default.
- W4365145108 creator A5072342228 @default.
- W4365145108 creator A5080307602 @default.
- W4365145108 date "2023-04-12" @default.
- W4365145108 modified "2023-09-30" @default.
- W4365145108 title "A systematic review of social network sentiment analysis with comparative study of ensemble-based techniques" @default.
- W4365145108 cites W1094348930 @default.
- W4365145108 cites W1426199569 @default.
- W4365145108 cites W1501931667 @default.
- W4365145108 cites W1967947242 @default.
- W4365145108 cites W1969759334 @default.
- W4365145108 cites W1975297192 @default.
- W4365145108 cites W1984676746 @default.
- W4365145108 cites W2003989635 @default.
- W4365145108 cites W2011273153 @default.
- W4365145108 cites W2011432097 @default.
- W4365145108 cites W2017337590 @default.
- W4365145108 cites W2021137987 @default.
- W4365145108 cites W2056132907 @default.
- W4365145108 cites W2062951208 @default.
- W4365145108 cites W2068515881 @default.
- W4365145108 cites W2070493638 @default.
- W4365145108 cites W2072064926 @default.
- W4365145108 cites W2080558111 @default.
- W4365145108 cites W2083607236 @default.
- W4365145108 cites W2084046180 @default.
- W4365145108 cites W2084362125 @default.
- W4365145108 cites W2086289679 @default.
- W4365145108 cites W2089159695 @default.
- W4365145108 cites W2092782467 @default.
- W4365145108 cites W2093206080 @default.
- W4365145108 cites W2097633543 @default.
- W4365145108 cites W2102117374 @default.
- W4365145108 cites W2115242108 @default.
- W4365145108 cites W2118965172 @default.
- W4365145108 cites W2120400822 @default.
- W4365145108 cites W2127824649 @default.
- W4365145108 cites W2127977814 @default.
- W4365145108 cites W2132680170 @default.
- W4365145108 cites W2133077909 @default.
- W4365145108 cites W2134090438 @default.
- W4365145108 cites W2137424107 @default.
- W4365145108 cites W2138854216 @default.
- W4365145108 cites W2143455647 @default.
- W4365145108 cites W2143570397 @default.
- W4365145108 cites W2148034183 @default.
- W4365145108 cites W2151570219 @default.
- W4365145108 cites W2153353890 @default.
- W4365145108 cites W2160660844 @default.
- W4365145108 cites W2166861990 @default.
- W4365145108 cites W2167917621 @default.
- W4365145108 cites W2230111422 @default.
- W4365145108 cites W2251691443 @default.
- W4365145108 cites W2251920663 @default.
- W4365145108 cites W2270941958 @default.
- W4365145108 cites W2317515691 @default.
- W4365145108 cites W23451747 @default.
- W4365145108 cites W2417999172 @default.
- W4365145108 cites W2440899416 @default.
- W4365145108 cites W2462290672 @default.
- W4365145108 cites W2463751733 @default.
- W4365145108 cites W2464619766 @default.
- W4365145108 cites W2502187034 @default.
- W4365145108 cites W2513138008 @default.
- W4365145108 cites W2528894711 @default.
- W4365145108 cites W2530935544 @default.
- W4365145108 cites W2540512703 @default.
- W4365145108 cites W2563345517 @default.
- W4365145108 cites W2575143348 @default.
- W4365145108 cites W2593754960 @default.
- W4365145108 cites W2600278912 @default.
- W4365145108 cites W2606902231 @default.
- W4365145108 cites W2612186323 @default.
- W4365145108 cites W2728118554 @default.
- W4365145108 cites W2743224089 @default.
- W4365145108 cites W2765486244 @default.
- W4365145108 cites W2769566324 @default.
- W4365145108 cites W2781346340 @default.
- W4365145108 cites W2789239487 @default.
- W4365145108 cites W2791061589 @default.
- W4365145108 cites W2792916349 @default.
- W4365145108 cites W2798984401 @default.
- W4365145108 cites W2805756230 @default.
- W4365145108 cites W2886509668 @default.
- W4365145108 cites W2889362093 @default.
- W4365145108 cites W2892285536 @default.
- W4365145108 cites W2896225406 @default.
- W4365145108 cites W2910785183 @default.
- W4365145108 cites W2921446579 @default.
- W4365145108 cites W2932164076 @default.
- W4365145108 cites W2933698106 @default.
- W4365145108 cites W2946439493 @default.
- W4365145108 cites W2947519199 @default.
- W4365145108 cites W2951494616 @default.