Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365211700> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4365211700 abstract "There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user's context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user's historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an ``optimized'' intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study." @default.
- W4365211700 created "2023-04-13" @default.
- W4365211700 creator A5028312587 @default.
- W4365211700 creator A5037013251 @default.
- W4365211700 creator A5050868515 @default.
- W4365211700 creator A5055411452 @default.
- W4365211700 creator A5070589969 @default.
- W4365211700 creator A5078564922 @default.
- W4365211700 creator A5081612036 @default.
- W4365211700 creator A5086475997 @default.
- W4365211700 date "2023-04-11" @default.
- W4365211700 modified "2023-10-06" @default.
- W4365211700 title "Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling" @default.
- W4365211700 doi "https://doi.org/10.48550/arxiv.2304.05365" @default.
- W4365211700 hasPublicationYear "2023" @default.
- W4365211700 type Work @default.
- W4365211700 citedByCount "0" @default.
- W4365211700 crossrefType "posted-content" @default.
- W4365211700 hasAuthorship W4365211700A5028312587 @default.
- W4365211700 hasAuthorship W4365211700A5037013251 @default.
- W4365211700 hasAuthorship W4365211700A5050868515 @default.
- W4365211700 hasAuthorship W4365211700A5055411452 @default.
- W4365211700 hasAuthorship W4365211700A5070589969 @default.
- W4365211700 hasAuthorship W4365211700A5078564922 @default.
- W4365211700 hasAuthorship W4365211700A5081612036 @default.
- W4365211700 hasAuthorship W4365211700A5086475997 @default.
- W4365211700 hasBestOaLocation W43652117001 @default.
- W4365211700 hasConcept C11413529 @default.
- W4365211700 hasConcept C119857082 @default.
- W4365211700 hasConcept C136764020 @default.
- W4365211700 hasConcept C150921843 @default.
- W4365211700 hasConcept C151730666 @default.
- W4365211700 hasConcept C154945302 @default.
- W4365211700 hasConcept C183003079 @default.
- W4365211700 hasConcept C2779343474 @default.
- W4365211700 hasConcept C41008148 @default.
- W4365211700 hasConcept C86803240 @default.
- W4365211700 hasConcept C97541855 @default.
- W4365211700 hasConceptScore W4365211700C11413529 @default.
- W4365211700 hasConceptScore W4365211700C119857082 @default.
- W4365211700 hasConceptScore W4365211700C136764020 @default.
- W4365211700 hasConceptScore W4365211700C150921843 @default.
- W4365211700 hasConceptScore W4365211700C151730666 @default.
- W4365211700 hasConceptScore W4365211700C154945302 @default.
- W4365211700 hasConceptScore W4365211700C183003079 @default.
- W4365211700 hasConceptScore W4365211700C2779343474 @default.
- W4365211700 hasConceptScore W4365211700C41008148 @default.
- W4365211700 hasConceptScore W4365211700C86803240 @default.
- W4365211700 hasConceptScore W4365211700C97541855 @default.
- W4365211700 hasLocation W43652117001 @default.
- W4365211700 hasLocation W43652117002 @default.
- W4365211700 hasOpenAccess W4365211700 @default.
- W4365211700 hasPrimaryLocation W43652117001 @default.
- W4365211700 hasRelatedWork W2108595774 @default.
- W4365211700 hasRelatedWork W260766989 @default.
- W4365211700 hasRelatedWork W2796868086 @default.
- W4365211700 hasRelatedWork W2897737265 @default.
- W4365211700 hasRelatedWork W2959276766 @default.
- W4365211700 hasRelatedWork W2961085424 @default.
- W4365211700 hasRelatedWork W3037422413 @default.
- W4365211700 hasRelatedWork W4206669594 @default.
- W4365211700 hasRelatedWork W4295941380 @default.
- W4365211700 hasRelatedWork W4319083788 @default.
- W4365211700 isParatext "false" @default.
- W4365211700 isRetracted "false" @default.
- W4365211700 workType "article" @default.