Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365393358> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4365393358 endingPage "720" @default.
- W4365393358 startingPage "712" @default.
- W4365393358 abstract "Abnormal event detection, which refers to mining unusual interactions among involved entities, plays an important role in many real applications. Previous works mostly oversimplify this task as detecting abnormal pair-wise interactions. However, real-world events may contain multi-typed attributed entities and complex interactions among them, which forms an Attributed Heterogeneous Information Network (AHIN). With the boom of social networks, abnormal event detection in AHIN has become an important, but seldom explored task. In this paper, we firstly study the unsupervised abnormal event detection problem in AHIN. The events are considered as star-schema instances of AHIN and are further modeled by hypergraphs. A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns. AEHCL designs the intra-event and inter-event contrastive modules to exploit self-supervised AHIN information. The intra-event contrastive module captures the pair-wise and multivariate interaction anomalies within an event, and the inter-event module captures the contextual anomalies among events. These two modules collaboratively boost the performance of each other and improve the detection results. During the testing phase, a contrastive learning-based abnormal event score function is further proposed to measure the abnormality degree of events. Extensive experiments on three datasets in different scenarios demonstrate the effectiveness of AEHCL, and the results improve state-of-the-art baselines up to 12.0% in Average Precision (AP) and 4.6% in Area Under Curve (AUC) respectively." @default.
- W4365393358 created "2023-04-14" @default.
- W4365393358 creator A5002262984 @default.
- W4365393358 creator A5020482805 @default.
- W4365393358 creator A5051805730 @default.
- W4365393358 creator A5052675433 @default.
- W4365393358 creator A5081115024 @default.
- W4365393358 date "2023-01-01" @default.
- W4365393358 modified "2023-10-01" @default.
- W4365393358 title "Abnormal Event Detection via Hypergraph Contrastive Learning" @default.
- W4365393358 doi "https://doi.org/10.1137/1.9781611977653.ch80" @default.
- W4365393358 hasPublicationYear "2023" @default.
- W4365393358 type Work @default.
- W4365393358 citedByCount "0" @default.
- W4365393358 crossrefType "book-chapter" @default.
- W4365393358 hasAuthorship W4365393358A5002262984 @default.
- W4365393358 hasAuthorship W4365393358A5020482805 @default.
- W4365393358 hasAuthorship W4365393358A5051805730 @default.
- W4365393358 hasAuthorship W4365393358A5052675433 @default.
- W4365393358 hasAuthorship W4365393358A5081115024 @default.
- W4365393358 hasConcept C105795698 @default.
- W4365393358 hasConcept C118615104 @default.
- W4365393358 hasConcept C119857082 @default.
- W4365393358 hasConcept C121332964 @default.
- W4365393358 hasConcept C124101348 @default.
- W4365393358 hasConcept C153180895 @default.
- W4365393358 hasConcept C154945302 @default.
- W4365393358 hasConcept C15744967 @default.
- W4365393358 hasConcept C165696696 @default.
- W4365393358 hasConcept C204321447 @default.
- W4365393358 hasConcept C2777810175 @default.
- W4365393358 hasConcept C2779662365 @default.
- W4365393358 hasConcept C2781221856 @default.
- W4365393358 hasConcept C33923547 @default.
- W4365393358 hasConcept C38652104 @default.
- W4365393358 hasConcept C41008148 @default.
- W4365393358 hasConcept C50965678 @default.
- W4365393358 hasConcept C62520636 @default.
- W4365393358 hasConcept C77805123 @default.
- W4365393358 hasConcept C95623464 @default.
- W4365393358 hasConceptScore W4365393358C105795698 @default.
- W4365393358 hasConceptScore W4365393358C118615104 @default.
- W4365393358 hasConceptScore W4365393358C119857082 @default.
- W4365393358 hasConceptScore W4365393358C121332964 @default.
- W4365393358 hasConceptScore W4365393358C124101348 @default.
- W4365393358 hasConceptScore W4365393358C153180895 @default.
- W4365393358 hasConceptScore W4365393358C154945302 @default.
- W4365393358 hasConceptScore W4365393358C15744967 @default.
- W4365393358 hasConceptScore W4365393358C165696696 @default.
- W4365393358 hasConceptScore W4365393358C204321447 @default.
- W4365393358 hasConceptScore W4365393358C2777810175 @default.
- W4365393358 hasConceptScore W4365393358C2779662365 @default.
- W4365393358 hasConceptScore W4365393358C2781221856 @default.
- W4365393358 hasConceptScore W4365393358C33923547 @default.
- W4365393358 hasConceptScore W4365393358C38652104 @default.
- W4365393358 hasConceptScore W4365393358C41008148 @default.
- W4365393358 hasConceptScore W4365393358C50965678 @default.
- W4365393358 hasConceptScore W4365393358C62520636 @default.
- W4365393358 hasConceptScore W4365393358C77805123 @default.
- W4365393358 hasConceptScore W4365393358C95623464 @default.
- W4365393358 hasLocation W43653933581 @default.
- W4365393358 hasOpenAccess W4365393358 @default.
- W4365393358 hasPrimaryLocation W43653933581 @default.
- W4365393358 hasRelatedWork W101200806 @default.
- W4365393358 hasRelatedWork W1483367581 @default.
- W4365393358 hasRelatedWork W2001652754 @default.
- W4365393358 hasRelatedWork W2379065761 @default.
- W4365393358 hasRelatedWork W2549006548 @default.
- W4365393358 hasRelatedWork W2807311372 @default.
- W4365393358 hasRelatedWork W2961085424 @default.
- W4365393358 hasRelatedWork W3043252291 @default.
- W4365393358 hasRelatedWork W4211088005 @default.
- W4365393358 hasRelatedWork W4214932115 @default.
- W4365393358 isParatext "false" @default.
- W4365393358 isRetracted "false" @default.
- W4365393358 workType "book-chapter" @default.