Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365447864> ?p ?o ?g. }
- W4365447864 endingPage "238" @default.
- W4365447864 startingPage "238" @default.
- W4365447864 abstract "Road Traffic Accidents (RTA) cause human losses and irreparable physical and psychological damage to many of the victims. They also involve a very relevant economic dimension. It is urgent to improve the management of human and material resources for more effective prevention. This work makes an important contribution by presenting a methodology that allowed for achieving a predictive model for the occurrence of RTA on a road with a high RTA rate. The prediction is obtained for each road segment for a given time and day and combines results from statistical methods, spatial analysis, and artificial intelligence models. The performance of three Machine Learning (ML) models (Random Forest, C5.0 and Logistic Regression) is compared using different approaches for imbalanced data (random sampling, directional sampling, and Random Over-Sampling Examples (ROSE)) and using different segment lengths (500 m and 2000 m). This study used RTA data from 2016–2019 (training) and from May 2021–June 2022 (test). The most effective model was an ML logistic regression with the ROSE approach, using segments length 500 m (sensitivity = 87%, specificity = 60%, AUC = 0.82). The model was implemented in a digital application, and a Portuguese security force is already using it." @default.
- W4365447864 created "2023-04-15" @default.
- W4365447864 creator A5001771757 @default.
- W4365447864 creator A5013743028 @default.
- W4365447864 creator A5028531406 @default.
- W4365447864 creator A5029435786 @default.
- W4365447864 creator A5034635105 @default.
- W4365447864 creator A5062915951 @default.
- W4365447864 creator A5068606528 @default.
- W4365447864 creator A5070525614 @default.
- W4365447864 creator A5077608654 @default.
- W4365447864 creator A5078611450 @default.
- W4365447864 creator A5086173195 @default.
- W4365447864 creator A5087522587 @default.
- W4365447864 date "2023-04-13" @default.
- W4365447864 modified "2023-09-26" @default.
- W4365447864 title "Prediction of Road Traffic Accidents on a Road in Portugal: A Multidisciplinary Approach Using Artificial Intelligence, Statistics, and Geographic Information Systems" @default.
- W4365447864 cites W2117190680 @default.
- W4365447864 cites W2118978333 @default.
- W4365447864 cites W2274196662 @default.
- W4365447864 cites W2910624182 @default.
- W4365447864 cites W2945844447 @default.
- W4365447864 cites W2951127371 @default.
- W4365447864 cites W2951569056 @default.
- W4365447864 cites W3081626762 @default.
- W4365447864 cites W3092339997 @default.
- W4365447864 cites W3092749388 @default.
- W4365447864 cites W3116135537 @default.
- W4365447864 cites W3131053508 @default.
- W4365447864 cites W3167130310 @default.
- W4365447864 cites W3172909759 @default.
- W4365447864 cites W3190972852 @default.
- W4365447864 cites W3216537313 @default.
- W4365447864 cites W4200284027 @default.
- W4365447864 cites W4200432283 @default.
- W4365447864 cites W4206045635 @default.
- W4365447864 cites W4210501250 @default.
- W4365447864 cites W4210524907 @default.
- W4365447864 cites W4211070280 @default.
- W4365447864 cites W4214832159 @default.
- W4365447864 cites W4214904744 @default.
- W4365447864 cites W4224290074 @default.
- W4365447864 cites W4280608029 @default.
- W4365447864 cites W4281871581 @default.
- W4365447864 cites W4289518830 @default.
- W4365447864 cites W4295065110 @default.
- W4365447864 cites W4322504595 @default.
- W4365447864 doi "https://doi.org/10.3390/info14040238" @default.
- W4365447864 hasPublicationYear "2023" @default.
- W4365447864 type Work @default.
- W4365447864 citedByCount "0" @default.
- W4365447864 crossrefType "journal-article" @default.
- W4365447864 hasAuthorship W4365447864A5001771757 @default.
- W4365447864 hasAuthorship W4365447864A5013743028 @default.
- W4365447864 hasAuthorship W4365447864A5028531406 @default.
- W4365447864 hasAuthorship W4365447864A5029435786 @default.
- W4365447864 hasAuthorship W4365447864A5034635105 @default.
- W4365447864 hasAuthorship W4365447864A5062915951 @default.
- W4365447864 hasAuthorship W4365447864A5068606528 @default.
- W4365447864 hasAuthorship W4365447864A5070525614 @default.
- W4365447864 hasAuthorship W4365447864A5077608654 @default.
- W4365447864 hasAuthorship W4365447864A5078611450 @default.
- W4365447864 hasAuthorship W4365447864A5086173195 @default.
- W4365447864 hasAuthorship W4365447864A5087522587 @default.
- W4365447864 hasBestOaLocation W43654478641 @default.
- W4365447864 hasConcept C105795698 @default.
- W4365447864 hasConcept C106131492 @default.
- W4365447864 hasConcept C119857082 @default.
- W4365447864 hasConcept C140779682 @default.
- W4365447864 hasConcept C144024400 @default.
- W4365447864 hasConcept C151956035 @default.
- W4365447864 hasConcept C154945302 @default.
- W4365447864 hasConcept C169258074 @default.
- W4365447864 hasConcept C202444582 @default.
- W4365447864 hasConcept C22467394 @default.
- W4365447864 hasConcept C31972630 @default.
- W4365447864 hasConcept C33676613 @default.
- W4365447864 hasConcept C33923547 @default.
- W4365447864 hasConcept C36289849 @default.
- W4365447864 hasConcept C41008148 @default.
- W4365447864 hasConceptScore W4365447864C105795698 @default.
- W4365447864 hasConceptScore W4365447864C106131492 @default.
- W4365447864 hasConceptScore W4365447864C119857082 @default.
- W4365447864 hasConceptScore W4365447864C140779682 @default.
- W4365447864 hasConceptScore W4365447864C144024400 @default.
- W4365447864 hasConceptScore W4365447864C151956035 @default.
- W4365447864 hasConceptScore W4365447864C154945302 @default.
- W4365447864 hasConceptScore W4365447864C169258074 @default.
- W4365447864 hasConceptScore W4365447864C202444582 @default.
- W4365447864 hasConceptScore W4365447864C22467394 @default.
- W4365447864 hasConceptScore W4365447864C31972630 @default.
- W4365447864 hasConceptScore W4365447864C33676613 @default.
- W4365447864 hasConceptScore W4365447864C33923547 @default.
- W4365447864 hasConceptScore W4365447864C36289849 @default.
- W4365447864 hasConceptScore W4365447864C41008148 @default.
- W4365447864 hasIssue "4" @default.
- W4365447864 hasLocation W43654478641 @default.
- W4365447864 hasOpenAccess W4365447864 @default.