Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365448040> ?p ?o ?g. }
- W4365448040 abstract "With the growing use of mobile devices and Online Social Networks (OSNs), sharing digital content, especially digital images is extremely high as well as popular. This made us convenient to handle the ongoing COVID-19 crisis which has brought about years of change in the sharing of digital content online. On the other hand, the digital image processing tools which are powerful enough to make the perfect image duplication compromises the privacy of the transmitted digital content. Therefore, content authentication, proof of ownership, and integrity of digital images are considered crucial problems in the world of digital that can be accomplished by employing a digital watermarking technique. On contrary, watermarking issues are to triumph trade-offs among imperceptibility, robustness, and payload. However, most existing systems are unable to handle the problem of tamper detection and recovery in case of intentional and unintentional attacks concerning these trade-offs. Also, the existing system fails to withstand the geometrical attacks. To resolve the above shortcomings, this proposed work offers a new multi-biometric based semi-fragile watermarking system using Dual-Tree Complex Wavelet Transform (DTCWT) and pseudo-Zernike moments (PZM) for content authentication of social media data. In this research work, the DTCWT-based coefficients are used for achieving maximum embedding capacity. The Rotation and noise invariance properties of Pseudo Zernike moments make the system attain the highest level of robustness when compared to conventional watermarking systems. To achieve authentication and proof of identity, the watermarks of about four numbers are used for embedding as a replacement for a single watermark image in traditional systems. Among four watermarks, three are the biometric images namely Logo or unique image of the user, fingerprint biometric of the owner, and the metadata of the original media to be transmitted. In addition, to achieve the tamper localization property, the Pseudo Zernike moments of the original cover image are obtained as a feature vector and also embedded as a watermark. To attain a better level of security, each watermark is converted into Zernike moments, Arnold scrambled image, and SHA outputs respectively. Then, to sustain the trade-off among the watermarking parameters, the optimal embedding location is determined. Moreover, the watermarked image is also signed by the owner's other biometric namely digital signature, and converted into Public key matrix Pkm and embedded onto the higher frequency subband namely, HL of the 1-level DWT. The proposed system also accomplishes a multi-level authentication, among that the first level is attained by the decryption of the extracted multiple watermark images with the help of the appropriate decryption mechanism which is followed by the comparison of the authentication key which is extracted using the key which is regenerated at the receiver's end. The simulation outcomes evident that the proposed system shows superior performance towards content authentication, to most remarkable intentional and unintentional attacks among the existing watermarking systems." @default.
- W4365448040 created "2023-04-15" @default.
- W4365448040 creator A5002948669 @default.
- W4365448040 creator A5052287919 @default.
- W4365448040 creator A5089359033 @default.
- W4365448040 date "2023-04-13" @default.
- W4365448040 modified "2023-10-04" @default.
- W4365448040 title "A robust semi-fragile watermarking system using Pseudo-Zernike moments and dual tree complex wavelet transform for social media content authentication" @default.
- W4365448040 cites W1934028671 @default.
- W4365448040 cites W1976744965 @default.
- W4365448040 cites W2007180288 @default.
- W4365448040 cites W2018332268 @default.
- W4365448040 cites W2024913314 @default.
- W4365448040 cites W2024995963 @default.
- W4365448040 cites W2034465486 @default.
- W4365448040 cites W2045010718 @default.
- W4365448040 cites W2050247929 @default.
- W4365448040 cites W2057827688 @default.
- W4365448040 cites W2066105070 @default.
- W4365448040 cites W2080172330 @default.
- W4365448040 cites W2092805919 @default.
- W4365448040 cites W2104116677 @default.
- W4365448040 cites W2127396544 @default.
- W4365448040 cites W2129276048 @default.
- W4365448040 cites W2146880335 @default.
- W4365448040 cites W2146921806 @default.
- W4365448040 cites W2158376924 @default.
- W4365448040 cites W2162294138 @default.
- W4365448040 cites W2162963619 @default.
- W4365448040 cites W2193183414 @default.
- W4365448040 cites W2248788127 @default.
- W4365448040 cites W228639283 @default.
- W4365448040 cites W2391676209 @default.
- W4365448040 cites W2399968856 @default.
- W4365448040 cites W2514673756 @default.
- W4365448040 cites W2530835751 @default.
- W4365448040 cites W2551235116 @default.
- W4365448040 cites W2551894759 @default.
- W4365448040 cites W2552576197 @default.
- W4365448040 cites W2583003392 @default.
- W4365448040 cites W2586363962 @default.
- W4365448040 cites W2746416264 @default.
- W4365448040 cites W2766075640 @default.
- W4365448040 cites W2781858482 @default.
- W4365448040 cites W2789641338 @default.
- W4365448040 cites W2793905823 @default.
- W4365448040 cites W2915597988 @default.
- W4365448040 cites W2921435440 @default.
- W4365448040 cites W2988744380 @default.
- W4365448040 cites W2997999392 @default.
- W4365448040 cites W3036849365 @default.
- W4365448040 cites W3039676067 @default.
- W4365448040 cites W3164957678 @default.
- W4365448040 cites W3199955888 @default.
- W4365448040 cites W3209030078 @default.
- W4365448040 cites W4200520771 @default.
- W4365448040 cites W4214604348 @default.
- W4365448040 cites W4224291944 @default.
- W4365448040 cites W4280554660 @default.
- W4365448040 cites W792294310 @default.
- W4365448040 doi "https://doi.org/10.1007/s11042-023-15177-4" @default.
- W4365448040 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362657" @default.
- W4365448040 hasPublicationYear "2023" @default.
- W4365448040 type Work @default.
- W4365448040 citedByCount "6" @default.
- W4365448040 countsByYear W43654480402023 @default.
- W4365448040 crossrefType "journal-article" @default.
- W4365448040 hasAuthorship W4365448040A5002948669 @default.
- W4365448040 hasAuthorship W4365448040A5052287919 @default.
- W4365448040 hasAuthorship W4365448040A5089359033 @default.
- W4365448040 hasBestOaLocation W43654480401 @default.
- W4365448040 hasConcept C104317684 @default.
- W4365448040 hasConcept C115961682 @default.
- W4365448040 hasConcept C120665830 @default.
- W4365448040 hasConcept C121332964 @default.
- W4365448040 hasConcept C124101348 @default.
- W4365448040 hasConcept C148417208 @default.
- W4365448040 hasConcept C150817343 @default.
- W4365448040 hasConcept C154945302 @default.
- W4365448040 hasConcept C165699331 @default.
- W4365448040 hasConcept C185592680 @default.
- W4365448040 hasConcept C2779344036 @default.
- W4365448040 hasConcept C31972630 @default.
- W4365448040 hasConcept C38652104 @default.
- W4365448040 hasConcept C41008148 @default.
- W4365448040 hasConcept C41608201 @default.
- W4365448040 hasConcept C42781572 @default.
- W4365448040 hasConcept C49774154 @default.
- W4365448040 hasConcept C55493867 @default.
- W4365448040 hasConcept C63479239 @default.
- W4365448040 hasConcept C80444323 @default.
- W4365448040 hasConcept C92423082 @default.
- W4365448040 hasConcept C9417928 @default.
- W4365448040 hasConceptScore W4365448040C104317684 @default.
- W4365448040 hasConceptScore W4365448040C115961682 @default.
- W4365448040 hasConceptScore W4365448040C120665830 @default.
- W4365448040 hasConceptScore W4365448040C121332964 @default.
- W4365448040 hasConceptScore W4365448040C124101348 @default.
- W4365448040 hasConceptScore W4365448040C148417208 @default.
- W4365448040 hasConceptScore W4365448040C150817343 @default.