Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365449595> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4365449595 abstract "Abstract. For optimum operation, modern production systems require a careful adjustment of the employed manufacturing processes. Physics-based process simulations can effectively support this process optimisation; however, their considerable computation times are often a significant barrier. One option to reduce the computational load is surrogate-based optimisation (SBO). Although SBO generally helps improve convergence, it can turn out unwieldy when the optimisation task varies, e.g. due to frequent component adaptations for customisation. In order to solve such variable optimisation tasks, this work studies how recent advances in machine learning (ML) can enhance and extend current surrogate capabilities. More specifically, an ML-algorithm interacts with generic samples of component geometries in a forming simulation environment and learns to optimise a forming process for variable geometries. The considered example of this work is blank holder optimisation in textile forming. After training, the algorithm is able to give useful recommendations even for new, non-generic geometries. While the prior work considered initial recommendations only, this work studies the convergence behaviour upon component-specific algorithm refinement (optimisation) at the example of two geometries. The convergence of the new pre-trained ML-approach is compared to classical SBO and a genetic algorithm (GA). The results show that initial recommendations indeed converge to the process optimum and that the speed of convergence outperforms the GA and compares roughly to SBO. It is concluded that – once pretrained –the new ML-approach is more efficient on variable optimisation tasks than classical SBO." @default.
- W4365449595 created "2023-04-15" @default.
- W4365449595 creator A5072561672 @default.
- W4365449595 date "2023-04-19" @default.
- W4365449595 modified "2023-09-26" @default.
- W4365449595 title "Forming process optimisation for variable geometries by machine learning – Convergence analysis and assessment" @default.
- W4365449595 doi "https://doi.org/10.21741/9781644902479-126" @default.
- W4365449595 hasPublicationYear "2023" @default.
- W4365449595 type Work @default.
- W4365449595 citedByCount "0" @default.
- W4365449595 crossrefType "proceedings-article" @default.
- W4365449595 hasAuthorship W4365449595A5072561672 @default.
- W4365449595 hasBestOaLocation W43654495951 @default.
- W4365449595 hasConcept C111919701 @default.
- W4365449595 hasConcept C11413529 @default.
- W4365449595 hasConcept C119857082 @default.
- W4365449595 hasConcept C121332964 @default.
- W4365449595 hasConcept C126255220 @default.
- W4365449595 hasConcept C127413603 @default.
- W4365449595 hasConcept C134306372 @default.
- W4365449595 hasConcept C154945302 @default.
- W4365449595 hasConcept C162324750 @default.
- W4365449595 hasConcept C168167062 @default.
- W4365449595 hasConcept C182365436 @default.
- W4365449595 hasConcept C201995342 @default.
- W4365449595 hasConcept C2777303404 @default.
- W4365449595 hasConcept C2780451532 @default.
- W4365449595 hasConcept C33923547 @default.
- W4365449595 hasConcept C41008148 @default.
- W4365449595 hasConcept C45374587 @default.
- W4365449595 hasConcept C50522688 @default.
- W4365449595 hasConcept C8880873 @default.
- W4365449595 hasConcept C97355855 @default.
- W4365449595 hasConcept C98045186 @default.
- W4365449595 hasConceptScore W4365449595C111919701 @default.
- W4365449595 hasConceptScore W4365449595C11413529 @default.
- W4365449595 hasConceptScore W4365449595C119857082 @default.
- W4365449595 hasConceptScore W4365449595C121332964 @default.
- W4365449595 hasConceptScore W4365449595C126255220 @default.
- W4365449595 hasConceptScore W4365449595C127413603 @default.
- W4365449595 hasConceptScore W4365449595C134306372 @default.
- W4365449595 hasConceptScore W4365449595C154945302 @default.
- W4365449595 hasConceptScore W4365449595C162324750 @default.
- W4365449595 hasConceptScore W4365449595C168167062 @default.
- W4365449595 hasConceptScore W4365449595C182365436 @default.
- W4365449595 hasConceptScore W4365449595C201995342 @default.
- W4365449595 hasConceptScore W4365449595C2777303404 @default.
- W4365449595 hasConceptScore W4365449595C2780451532 @default.
- W4365449595 hasConceptScore W4365449595C33923547 @default.
- W4365449595 hasConceptScore W4365449595C41008148 @default.
- W4365449595 hasConceptScore W4365449595C45374587 @default.
- W4365449595 hasConceptScore W4365449595C50522688 @default.
- W4365449595 hasConceptScore W4365449595C8880873 @default.
- W4365449595 hasConceptScore W4365449595C97355855 @default.
- W4365449595 hasConceptScore W4365449595C98045186 @default.
- W4365449595 hasLocation W43654495951 @default.
- W4365449595 hasOpenAccess W4365449595 @default.
- W4365449595 hasPrimaryLocation W43654495951 @default.
- W4365449595 hasRelatedWork W2027479588 @default.
- W4365449595 hasRelatedWork W2071384383 @default.
- W4365449595 hasRelatedWork W2074210117 @default.
- W4365449595 hasRelatedWork W2082025713 @default.
- W4365449595 hasRelatedWork W2286596312 @default.
- W4365449595 hasRelatedWork W2351430220 @default.
- W4365449595 hasRelatedWork W2353889708 @default.
- W4365449595 hasRelatedWork W2359524399 @default.
- W4365449595 hasRelatedWork W2366345932 @default.
- W4365449595 hasRelatedWork W2369274841 @default.
- W4365449595 isParatext "false" @default.
- W4365449595 isRetracted "false" @default.
- W4365449595 workType "article" @default.