Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365453089> ?p ?o ?g. }
- W4365453089 endingPage "e1313" @default.
- W4365453089 startingPage "e1313" @default.
- W4365453089 abstract "DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94." @default.
- W4365453089 created "2023-04-15" @default.
- W4365453089 creator A5031113286 @default.
- W4365453089 creator A5072631017 @default.
- W4365453089 creator A5073834872 @default.
- W4365453089 date "2023-04-13" @default.
- W4365453089 modified "2023-10-18" @default.
- W4365453089 title "VIOLA jones algorithm with capsule graph network for deepfake detection" @default.
- W4365453089 cites W2072273451 @default.
- W4365453089 cites W2576444478 @default.
- W4365453089 cites W2797558164 @default.
- W4365453089 cites W2937353055 @default.
- W4365453089 cites W2949958650 @default.
- W4365453089 cites W2962770929 @default.
- W4365453089 cites W2963105487 @default.
- W4365453089 cites W2976439153 @default.
- W4365453089 cites W2980498517 @default.
- W4365453089 cites W2981803355 @default.
- W4365453089 cites W2982058372 @default.
- W4365453089 cites W2997355859 @default.
- W4365453089 cites W3013776328 @default.
- W4365453089 cites W3026105097 @default.
- W4365453089 cites W3034713808 @default.
- W4365453089 cites W3035063907 @default.
- W4365453089 cites W3040168631 @default.
- W4365453089 cites W3080610273 @default.
- W4365453089 cites W3087369771 @default.
- W4365453089 cites W3108281670 @default.
- W4365453089 cites W3114297766 @default.
- W4365453089 cites W3119295385 @default.
- W4365453089 cites W3121667743 @default.
- W4365453089 cites W3134284227 @default.
- W4365453089 cites W3158654678 @default.
- W4365453089 cites W3173581984 @default.
- W4365453089 cites W3174520390 @default.
- W4365453089 cites W3179017527 @default.
- W4365453089 cites W3182020042 @default.
- W4365453089 cites W3183127766 @default.
- W4365453089 cites W3185838909 @default.
- W4365453089 cites W3193498964 @default.
- W4365453089 cites W3202224891 @default.
- W4365453089 cites W3203894701 @default.
- W4365453089 cites W3205601133 @default.
- W4365453089 cites W3205940776 @default.
- W4365453089 cites W3213646008 @default.
- W4365453089 cites W3215694718 @default.
- W4365453089 cites W4206545193 @default.
- W4365453089 cites W4210448408 @default.
- W4365453089 cites W4210838854 @default.
- W4365453089 cites W4210890279 @default.
- W4365453089 cites W4225696264 @default.
- W4365453089 cites W4226102240 @default.
- W4365453089 cites W4226348722 @default.
- W4365453089 cites W4229375214 @default.
- W4365453089 cites W4281716507 @default.
- W4365453089 cites W4283702010 @default.
- W4365453089 cites W4285107695 @default.
- W4365453089 cites W4285494545 @default.
- W4365453089 cites W4285802837 @default.
- W4365453089 cites W4293056469 @default.
- W4365453089 cites W4293103018 @default.
- W4365453089 cites W4293195550 @default.
- W4365453089 cites W4307957576 @default.
- W4365453089 cites W4312126523 @default.
- W4365453089 cites W4312732298 @default.
- W4365453089 doi "https://doi.org/10.7717/peerj-cs.1313" @default.
- W4365453089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37346538" @default.
- W4365453089 hasPublicationYear "2023" @default.
- W4365453089 type Work @default.
- W4365453089 citedByCount "0" @default.
- W4365453089 crossrefType "journal-article" @default.
- W4365453089 hasAuthorship W4365453089A5031113286 @default.
- W4365453089 hasAuthorship W4365453089A5072631017 @default.
- W4365453089 hasAuthorship W4365453089A5073834872 @default.
- W4365453089 hasBestOaLocation W43654530891 @default.
- W4365453089 hasConcept C108583219 @default.
- W4365453089 hasConcept C11413529 @default.
- W4365453089 hasConcept C119857082 @default.
- W4365453089 hasConcept C132525143 @default.
- W4365453089 hasConcept C153180895 @default.
- W4365453089 hasConcept C154945302 @default.
- W4365453089 hasConcept C2984842247 @default.
- W4365453089 hasConcept C41008148 @default.
- W4365453089 hasConcept C50644808 @default.
- W4365453089 hasConcept C80444323 @default.
- W4365453089 hasConceptScore W4365453089C108583219 @default.
- W4365453089 hasConceptScore W4365453089C11413529 @default.
- W4365453089 hasConceptScore W4365453089C119857082 @default.
- W4365453089 hasConceptScore W4365453089C132525143 @default.
- W4365453089 hasConceptScore W4365453089C153180895 @default.
- W4365453089 hasConceptScore W4365453089C154945302 @default.
- W4365453089 hasConceptScore W4365453089C2984842247 @default.
- W4365453089 hasConceptScore W4365453089C41008148 @default.
- W4365453089 hasConceptScore W4365453089C50644808 @default.
- W4365453089 hasConceptScore W4365453089C80444323 @default.
- W4365453089 hasLocation W43654530891 @default.
- W4365453089 hasLocation W43654530892 @default.
- W4365453089 hasLocation W43654530893 @default.