Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365454003> ?p ?o ?g. }
- W4365454003 endingPage "2364" @default.
- W4365454003 startingPage "2343" @default.
- W4365454003 abstract "Abstract A high yield rate is a key factor related to success in the competitive global semiconductor manufacturing business market. Wafer bin maps (WBMs) can be used as one measure of the output quality of a semiconductor manufacturing process. A WBM is the image results from a number of circuit probe (CP) tests on a wafer after the completion of a manufacturing process. The specific defect patterns on WBMs provide crucial information for engineers to trace the causes of defects in the complicated manufacturing process. This study is aimed toward investigating major practical challenges in current WBM analyses. Our approach involved utilizing a small, carefully labeled subset to reduce the labor requirements and human recognition bias related to identification of very noisy images. The first proposed procedure classified the noisy defect patterns by using convolutional neural networks (CNNs) trained with a small subset of labeled WBMs in the early batches. The second proposed procedure provided the proper clusters of noisy defect patterns using the features extracted from the trained CNNs. This procedure made it possible to generate various clusters of WMBs and integrate them in label space. The third procedure separated the new pattern from the existing defect patterns with the help of a supplemental dataset from a similar wafer product. The evaluation of the three proposed procedures was done with simulation data generated from real sets of WBMs, which were added with random noise to maintain confidentiality. The evaluation results demonstrated the practical validity of the proposed procedures." @default.
- W4365454003 created "2023-04-15" @default.
- W4365454003 creator A5047443382 @default.
- W4365454003 creator A5076653421 @default.
- W4365454003 date "2023-04-13" @default.
- W4365454003 modified "2023-10-17" @default.
- W4365454003 title "Classifying and clustering noisy images using subset learning based on convolutional neural networks" @default.
- W4365454003 cites W132467846 @default.
- W4365454003 cites W1590083702 @default.
- W4365454003 cites W1975617480 @default.
- W4365454003 cites W2020286945 @default.
- W4365454003 cites W2030362328 @default.
- W4365454003 cites W2109366175 @default.
- W4365454003 cites W2112796928 @default.
- W4365454003 cites W2286515324 @default.
- W4365454003 cites W2607306668 @default.
- W4365454003 cites W2742339636 @default.
- W4365454003 cites W2790607928 @default.
- W4365454003 cites W2798589477 @default.
- W4365454003 cites W2805484002 @default.
- W4365454003 cites W2884851420 @default.
- W4365454003 cites W2940617832 @default.
- W4365454003 cites W2964154860 @default.
- W4365454003 cites W2970409000 @default.
- W4365454003 cites W2975403694 @default.
- W4365454003 cites W3000664697 @default.
- W4365454003 cites W3003758715 @default.
- W4365454003 cites W3006152022 @default.
- W4365454003 cites W3006864628 @default.
- W4365454003 cites W3008902695 @default.
- W4365454003 cites W3011969759 @default.
- W4365454003 cites W3077769229 @default.
- W4365454003 cites W3089513243 @default.
- W4365454003 cites W3097287327 @default.
- W4365454003 cites W3101748915 @default.
- W4365454003 cites W3107332691 @default.
- W4365454003 cites W3122230257 @default.
- W4365454003 cites W3139040562 @default.
- W4365454003 cites W3157024714 @default.
- W4365454003 cites W3161184525 @default.
- W4365454003 cites W3177093435 @default.
- W4365454003 cites W3180275357 @default.
- W4365454003 cites W3187417800 @default.
- W4365454003 cites W3193550730 @default.
- W4365454003 cites W3193736071 @default.
- W4365454003 cites W3201906629 @default.
- W4365454003 cites W4205157413 @default.
- W4365454003 cites W4280576345 @default.
- W4365454003 cites W4285297027 @default.
- W4365454003 doi "https://doi.org/10.1002/qre.3346" @default.
- W4365454003 hasPublicationYear "2023" @default.
- W4365454003 type Work @default.
- W4365454003 citedByCount "1" @default.
- W4365454003 countsByYear W43654540032023 @default.
- W4365454003 crossrefType "journal-article" @default.
- W4365454003 hasAuthorship W4365454003A5047443382 @default.
- W4365454003 hasAuthorship W4365454003A5076653421 @default.
- W4365454003 hasConcept C111919701 @default.
- W4365454003 hasConcept C115961682 @default.
- W4365454003 hasConcept C116834253 @default.
- W4365454003 hasConcept C117671659 @default.
- W4365454003 hasConcept C119599485 @default.
- W4365454003 hasConcept C119857082 @default.
- W4365454003 hasConcept C124101348 @default.
- W4365454003 hasConcept C127413603 @default.
- W4365454003 hasConcept C153180895 @default.
- W4365454003 hasConcept C154945302 @default.
- W4365454003 hasConcept C160671074 @default.
- W4365454003 hasConcept C26517878 @default.
- W4365454003 hasConcept C2987888538 @default.
- W4365454003 hasConcept C38652104 @default.
- W4365454003 hasConcept C41008148 @default.
- W4365454003 hasConcept C50644808 @default.
- W4365454003 hasConcept C59822182 @default.
- W4365454003 hasConcept C66018809 @default.
- W4365454003 hasConcept C73555534 @default.
- W4365454003 hasConcept C81363708 @default.
- W4365454003 hasConcept C86803240 @default.
- W4365454003 hasConcept C98045186 @default.
- W4365454003 hasConcept C99498987 @default.
- W4365454003 hasConceptScore W4365454003C111919701 @default.
- W4365454003 hasConceptScore W4365454003C115961682 @default.
- W4365454003 hasConceptScore W4365454003C116834253 @default.
- W4365454003 hasConceptScore W4365454003C117671659 @default.
- W4365454003 hasConceptScore W4365454003C119599485 @default.
- W4365454003 hasConceptScore W4365454003C119857082 @default.
- W4365454003 hasConceptScore W4365454003C124101348 @default.
- W4365454003 hasConceptScore W4365454003C127413603 @default.
- W4365454003 hasConceptScore W4365454003C153180895 @default.
- W4365454003 hasConceptScore W4365454003C154945302 @default.
- W4365454003 hasConceptScore W4365454003C160671074 @default.
- W4365454003 hasConceptScore W4365454003C26517878 @default.
- W4365454003 hasConceptScore W4365454003C2987888538 @default.
- W4365454003 hasConceptScore W4365454003C38652104 @default.
- W4365454003 hasConceptScore W4365454003C41008148 @default.
- W4365454003 hasConceptScore W4365454003C50644808 @default.
- W4365454003 hasConceptScore W4365454003C59822182 @default.
- W4365454003 hasConceptScore W4365454003C66018809 @default.