Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365479063> ?p ?o ?g. }
- W4365479063 abstract "Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in which these data are labeled vary widely. For Instance, an institution might provide a dataset of chest radiographs containing labels denoting the presence of pneumonia, while another institution might have a focus on determining the presence of metastases in the lung. Training a single AI model utilizing all these data is not feasible with conventional federated learning (FL). This prompts us to propose an extension to the widespread FL process, namely flexible federated learning (FFL) for collaborative training on such data. Using 695,000 chest radiographs from five institutions from across the globe - each with differing labels - we demonstrate that having heterogeneously labeled datasets, FFL-based training leads to significant performance increase compared to conventional FL training, where only the uniformly annotated images are utilized. We believe that our proposed algorithm could accelerate the process of bringing collaborative training methods from research and simulation phase to the real-world applications in healthcare." @default.
- W4365479063 created "2023-04-15" @default.
- W4365479063 creator A5016512818 @default.
- W4365479063 creator A5020686054 @default.
- W4365479063 creator A5043167013 @default.
- W4365479063 creator A5056553215 @default.
- W4365479063 creator A5072331224 @default.
- W4365479063 creator A5073483894 @default.
- W4365479063 creator A5076251937 @default.
- W4365479063 creator A5080978624 @default.
- W4365479063 creator A5091689170 @default.
- W4365479063 date "2023-04-13" @default.
- W4365479063 modified "2023-10-18" @default.
- W4365479063 title "Collaborative training of medical artificial intelligence models with non-uniform labels" @default.
- W4365479063 cites W2087600499 @default.
- W4365479063 cites W2194775991 @default.
- W4365479063 cites W2617595617 @default.
- W4365479063 cites W2914568698 @default.
- W4365479063 cites W2948930564 @default.
- W4365479063 cites W2962975664 @default.
- W4365479063 cites W2963373823 @default.
- W4365479063 cites W2995225687 @default.
- W4365479063 cites W2998175747 @default.
- W4365479063 cites W3002683979 @default.
- W4365479063 cites W3033511014 @default.
- W4365479063 cites W3039156183 @default.
- W4365479063 cites W3045674654 @default.
- W4365479063 cites W3089650410 @default.
- W4365479063 cites W3095948197 @default.
- W4365479063 cites W3099081599 @default.
- W4365479063 cites W3100779497 @default.
- W4365479063 cites W3101156210 @default.
- W4365479063 cites W3104135675 @default.
- W4365479063 cites W3114128166 @default.
- W4365479063 cites W3121997355 @default.
- W4365479063 cites W3122794187 @default.
- W4365479063 cites W3138516171 @default.
- W4365479063 cites W3146345129 @default.
- W4365479063 cites W3165750456 @default.
- W4365479063 cites W3172018708 @default.
- W4365479063 cites W3193830270 @default.
- W4365479063 cites W3200445016 @default.
- W4365479063 cites W3200840849 @default.
- W4365479063 cites W3201366746 @default.
- W4365479063 cites W3204895347 @default.
- W4365479063 cites W3205594709 @default.
- W4365479063 cites W3208096602 @default.
- W4365479063 cites W4200453770 @default.
- W4365479063 cites W4205164650 @default.
- W4365479063 cites W4213019189 @default.
- W4365479063 cites W4225746601 @default.
- W4365479063 cites W4229049871 @default.
- W4365479063 cites W4289012951 @default.
- W4365479063 cites W4293155325 @default.
- W4365479063 cites W4294106961 @default.
- W4365479063 cites W4309475415 @default.
- W4365479063 cites W4310781980 @default.
- W4365479063 doi "https://doi.org/10.1038/s41598-023-33303-y" @default.
- W4365479063 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37055456" @default.
- W4365479063 hasPublicationYear "2023" @default.
- W4365479063 type Work @default.
- W4365479063 citedByCount "0" @default.
- W4365479063 crossrefType "journal-article" @default.
- W4365479063 hasAuthorship W4365479063A5016512818 @default.
- W4365479063 hasAuthorship W4365479063A5020686054 @default.
- W4365479063 hasAuthorship W4365479063A5043167013 @default.
- W4365479063 hasAuthorship W4365479063A5056553215 @default.
- W4365479063 hasAuthorship W4365479063A5072331224 @default.
- W4365479063 hasAuthorship W4365479063A5073483894 @default.
- W4365479063 hasAuthorship W4365479063A5076251937 @default.
- W4365479063 hasAuthorship W4365479063A5080978624 @default.
- W4365479063 hasAuthorship W4365479063A5091689170 @default.
- W4365479063 hasBestOaLocation W43654790631 @default.
- W4365479063 hasConcept C108583219 @default.
- W4365479063 hasConcept C111919701 @default.
- W4365479063 hasConcept C119857082 @default.
- W4365479063 hasConcept C121332964 @default.
- W4365479063 hasConcept C150899416 @default.
- W4365479063 hasConcept C153294291 @default.
- W4365479063 hasConcept C154945302 @default.
- W4365479063 hasConcept C17744445 @default.
- W4365479063 hasConcept C199539241 @default.
- W4365479063 hasConcept C2522767166 @default.
- W4365479063 hasConcept C2777211547 @default.
- W4365479063 hasConcept C2780510313 @default.
- W4365479063 hasConcept C41008148 @default.
- W4365479063 hasConcept C51632099 @default.
- W4365479063 hasConcept C98045186 @default.
- W4365479063 hasConceptScore W4365479063C108583219 @default.
- W4365479063 hasConceptScore W4365479063C111919701 @default.
- W4365479063 hasConceptScore W4365479063C119857082 @default.
- W4365479063 hasConceptScore W4365479063C121332964 @default.
- W4365479063 hasConceptScore W4365479063C150899416 @default.
- W4365479063 hasConceptScore W4365479063C153294291 @default.
- W4365479063 hasConceptScore W4365479063C154945302 @default.
- W4365479063 hasConceptScore W4365479063C17744445 @default.
- W4365479063 hasConceptScore W4365479063C199539241 @default.
- W4365479063 hasConceptScore W4365479063C2522767166 @default.
- W4365479063 hasConceptScore W4365479063C2777211547 @default.
- W4365479063 hasConceptScore W4365479063C2780510313 @default.