Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365504218> ?p ?o ?g. }
- W4365504218 endingPage "26" @default.
- W4365504218 startingPage "1" @default.
- W4365504218 abstract "Treatment of influenza and its complications is a major challenge for healthcare systems. Pyrazine is one drug used in treating influenza. Aspergillic acid is major antibiotic constituent in pyrazine compounds mined from Aspergillus flavus' final stage. This stage of flavus is detected through color change forming a pale-yellow crystal structure. Detection of the same is complex and demands an experienced fraternity to continuously monitor the growth of fungus and identify its color change. However, researches proved that the task needs to be perfect and a tiny human error leads to a catastrophe in antibiotic creation. To avoid these flaws, druggists make a huge investment on costly equipment for accurate detection. To overcome these drawbacks, this article proposes a hybrid quantum convolutional neural network that predicts various stages of the fungus from the microscope's sample. To train the network, about 47,000 samples were poised under typical lab settings. The proposed system was tested in usual conditions and positively isolated the mature samples with 96% efficiency." @default.
- W4365504218 created "2023-04-15" @default.
- W4365504218 creator A5006435978 @default.
- W4365504218 creator A5008984683 @default.
- W4365504218 creator A5042107316 @default.
- W4365504218 creator A5050816633 @default.
- W4365504218 creator A5071213861 @default.
- W4365504218 date "2023-04-14" @default.
- W4365504218 modified "2023-10-01" @default.
- W4365504218 title "Detection of Antibiotic Constituent in Aspergillus flavus Using Quantum Convolutional Neural Network" @default.
- W4365504218 cites W1529583686 @default.
- W4365504218 cites W2015849729 @default.
- W4365504218 cites W2031909142 @default.
- W4365504218 cites W2043754733 @default.
- W4365504218 cites W2112631383 @default.
- W4365504218 cites W2297235974 @default.
- W4365504218 cites W2323034950 @default.
- W4365504218 cites W2765490497 @default.
- W4365504218 cites W2792315573 @default.
- W4365504218 cites W2792751287 @default.
- W4365504218 cites W2794902325 @default.
- W4365504218 cites W2799476711 @default.
- W4365504218 cites W2801908214 @default.
- W4365504218 cites W2811406237 @default.
- W4365504218 cites W2888774813 @default.
- W4365504218 cites W2913438790 @default.
- W4365504218 cites W2947999808 @default.
- W4365504218 cites W2963279936 @default.
- W4365504218 cites W2968726102 @default.
- W4365504218 cites W2970794526 @default.
- W4365504218 cites W2971910390 @default.
- W4365504218 cites W2980442517 @default.
- W4365504218 cites W2982185347 @default.
- W4365504218 cites W2995742898 @default.
- W4365504218 cites W3007475506 @default.
- W4365504218 cites W3019230722 @default.
- W4365504218 cites W3020996329 @default.
- W4365504218 cites W3025046335 @default.
- W4365504218 cites W3029789081 @default.
- W4365504218 cites W3033235469 @default.
- W4365504218 cites W3049602750 @default.
- W4365504218 cites W3087556850 @default.
- W4365504218 cites W3091691414 @default.
- W4365504218 cites W3092147542 @default.
- W4365504218 cites W3093697448 @default.
- W4365504218 cites W3132743969 @default.
- W4365504218 cites W3157393258 @default.
- W4365504218 cites W3162333052 @default.
- W4365504218 cites W3177553843 @default.
- W4365504218 cites W3179353159 @default.
- W4365504218 cites W3192227636 @default.
- W4365504218 cites W3197001900 @default.
- W4365504218 cites W3197343038 @default.
- W4365504218 cites W3201016647 @default.
- W4365504218 cites W3202564627 @default.
- W4365504218 cites W3217201372 @default.
- W4365504218 cites W3217686038 @default.
- W4365504218 cites W4200167653 @default.
- W4365504218 cites W4214865394 @default.
- W4365504218 cites W4223643716 @default.
- W4365504218 cites W4226176361 @default.
- W4365504218 cites W4283448162 @default.
- W4365504218 cites W4288076043 @default.
- W4365504218 cites W4288081075 @default.
- W4365504218 cites W5900934 @default.
- W4365504218 cites W3115431593 @default.
- W4365504218 doi "https://doi.org/10.4018/ijehmc.321150" @default.
- W4365504218 hasPublicationYear "2023" @default.
- W4365504218 type Work @default.
- W4365504218 citedByCount "0" @default.
- W4365504218 crossrefType "journal-article" @default.
- W4365504218 hasAuthorship W4365504218A5006435978 @default.
- W4365504218 hasAuthorship W4365504218A5008984683 @default.
- W4365504218 hasAuthorship W4365504218A5042107316 @default.
- W4365504218 hasAuthorship W4365504218A5050816633 @default.
- W4365504218 hasAuthorship W4365504218A5071213861 @default.
- W4365504218 hasBestOaLocation W43655042181 @default.
- W4365504218 hasConcept C153180895 @default.
- W4365504218 hasConcept C154945302 @default.
- W4365504218 hasConcept C186060115 @default.
- W4365504218 hasConcept C2777292910 @default.
- W4365504218 hasConcept C41008148 @default.
- W4365504218 hasConcept C501593827 @default.
- W4365504218 hasConcept C81363708 @default.
- W4365504218 hasConcept C86803240 @default.
- W4365504218 hasConcept C89423630 @default.
- W4365504218 hasConceptScore W4365504218C153180895 @default.
- W4365504218 hasConceptScore W4365504218C154945302 @default.
- W4365504218 hasConceptScore W4365504218C186060115 @default.
- W4365504218 hasConceptScore W4365504218C2777292910 @default.
- W4365504218 hasConceptScore W4365504218C41008148 @default.
- W4365504218 hasConceptScore W4365504218C501593827 @default.
- W4365504218 hasConceptScore W4365504218C81363708 @default.
- W4365504218 hasConceptScore W4365504218C86803240 @default.
- W4365504218 hasConceptScore W4365504218C89423630 @default.
- W4365504218 hasIssue "1" @default.
- W4365504218 hasLocation W43655042181 @default.
- W4365504218 hasOpenAccess W4365504218 @default.