Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365508806> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4365508806 endingPage "62" @default.
- W4365508806 startingPage "62" @default.
- W4365508806 abstract "Physics-Informed Neural Networks (PINNs) are a new class of machine learning algorithms that are capable of accurately solving complex partial differential equations (PDEs) without training data. By introducing a new methodology for fluid simulation, PINNs provide the opportunity to address challenges that were previously intractable, such as PDE problems that are ill-posed. PINNs can also solve parameterized problems in a parallel manner, which results in favorable scaling of the associated computational cost. The full potential of the application of PINNs to solving fluid dynamics problems is still unknown, as the method is still in early development: many issues remain to be addressed, such as the numerical stiffness of the training dynamics, the shortage of methods for simulating turbulent flows and the uncertainty surrounding what model hyperparameters perform best. In this paper, we investigated the accuracy and efficiency of PINNs for modeling aortic transvalvular blood flow in the laminar and turbulent regimes, using various techniques from the literature to improve the simulation accuracy of PINNs. Almost no work has been published, to date, on solving turbulent flows using PINNs without training data, as this regime has proved difficult. This paper aims to address this gap in the literature, by providing an illustrative example of such an application. The simulation results are discussed, and compared to results from the Finite Volume Method (FVM). It is shown that PINNs can closely match the FVM solution for laminar flow, with normalized maximum velocity and normalized maximum pressure errors as low as 5.74% and 9.29%, respectively. The simulation of turbulent flow is shown to be a greater challenge, with normalized maximum velocity and normalized maximum pressure errors only as low as 41.8% and 113%, respectively." @default.
- W4365508806 created "2023-04-15" @default.
- W4365508806 creator A5002057647 @default.
- W4365508806 creator A5087735707 @default.
- W4365508806 date "2023-04-14" @default.
- W4365508806 modified "2023-09-25" @default.
- W4365508806 title "Evaluation of Physics-Informed Neural Network Solution Accuracy and Efficiency for Modeling Aortic Transvalvular Blood Flow" @default.
- W4365508806 cites W1519405745 @default.
- W4365508806 cites W2003670885 @default.
- W4365508806 cites W2019450926 @default.
- W4365508806 cites W2029009742 @default.
- W4365508806 cites W2097663931 @default.
- W4365508806 cites W2098510103 @default.
- W4365508806 cites W2165947641 @default.
- W4365508806 cites W2899283552 @default.
- W4365508806 cites W2948230027 @default.
- W4365508806 cites W3010839048 @default.
- W4365508806 cites W3091986675 @default.
- W4365508806 cites W3097195800 @default.
- W4365508806 cites W3111914315 @default.
- W4365508806 cites W3116268267 @default.
- W4365508806 cites W3140906137 @default.
- W4365508806 cites W3153200540 @default.
- W4365508806 cites W3168386838 @default.
- W4365508806 cites W3179444763 @default.
- W4365508806 cites W3180490621 @default.
- W4365508806 cites W3185095713 @default.
- W4365508806 cites W3193222792 @default.
- W4365508806 cites W3200673624 @default.
- W4365508806 cites W3205073660 @default.
- W4365508806 cites W3209909540 @default.
- W4365508806 cites W3211426055 @default.
- W4365508806 cites W3215365433 @default.
- W4365508806 cites W3216718982 @default.
- W4365508806 cites W4307987609 @default.
- W4365508806 cites W4309776729 @default.
- W4365508806 cites W4312340993 @default.
- W4365508806 doi "https://doi.org/10.3390/mca28020062" @default.
- W4365508806 hasPublicationYear "2023" @default.
- W4365508806 type Work @default.
- W4365508806 citedByCount "0" @default.
- W4365508806 crossrefType "journal-article" @default.
- W4365508806 hasAuthorship W4365508806A5002057647 @default.
- W4365508806 hasAuthorship W4365508806A5087735707 @default.
- W4365508806 hasBestOaLocation W43655088061 @default.
- W4365508806 hasConcept C11413529 @default.
- W4365508806 hasConcept C121332964 @default.
- W4365508806 hasConcept C126255220 @default.
- W4365508806 hasConcept C154945302 @default.
- W4365508806 hasConcept C1633027 @default.
- W4365508806 hasConcept C165464430 @default.
- W4365508806 hasConcept C196558001 @default.
- W4365508806 hasConcept C28826006 @default.
- W4365508806 hasConcept C33923547 @default.
- W4365508806 hasConcept C38349280 @default.
- W4365508806 hasConcept C41008148 @default.
- W4365508806 hasConcept C50478463 @default.
- W4365508806 hasConcept C50644808 @default.
- W4365508806 hasConcept C57879066 @default.
- W4365508806 hasConcept C76563973 @default.
- W4365508806 hasConceptScore W4365508806C11413529 @default.
- W4365508806 hasConceptScore W4365508806C121332964 @default.
- W4365508806 hasConceptScore W4365508806C126255220 @default.
- W4365508806 hasConceptScore W4365508806C154945302 @default.
- W4365508806 hasConceptScore W4365508806C1633027 @default.
- W4365508806 hasConceptScore W4365508806C165464430 @default.
- W4365508806 hasConceptScore W4365508806C196558001 @default.
- W4365508806 hasConceptScore W4365508806C28826006 @default.
- W4365508806 hasConceptScore W4365508806C33923547 @default.
- W4365508806 hasConceptScore W4365508806C38349280 @default.
- W4365508806 hasConceptScore W4365508806C41008148 @default.
- W4365508806 hasConceptScore W4365508806C50478463 @default.
- W4365508806 hasConceptScore W4365508806C50644808 @default.
- W4365508806 hasConceptScore W4365508806C57879066 @default.
- W4365508806 hasConceptScore W4365508806C76563973 @default.
- W4365508806 hasIssue "2" @default.
- W4365508806 hasLocation W43655088061 @default.
- W4365508806 hasOpenAccess W4365508806 @default.
- W4365508806 hasPrimaryLocation W43655088061 @default.
- W4365508806 hasRelatedWork W1975133319 @default.
- W4365508806 hasRelatedWork W2004506083 @default.
- W4365508806 hasRelatedWork W2029589728 @default.
- W4365508806 hasRelatedWork W2087870903 @default.
- W4365508806 hasRelatedWork W2164528470 @default.
- W4365508806 hasRelatedWork W2437765590 @default.
- W4365508806 hasRelatedWork W2608607077 @default.
- W4365508806 hasRelatedWork W315793156 @default.
- W4365508806 hasRelatedWork W3202017394 @default.
- W4365508806 hasRelatedWork W2184929712 @default.
- W4365508806 hasVolume "28" @default.
- W4365508806 isParatext "false" @default.
- W4365508806 isRetracted "false" @default.
- W4365508806 workType "article" @default.