Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365514648> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4365514648 endingPage "1849" @default.
- W4365514648 startingPage "1849" @default.
- W4365514648 abstract "In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (APT) audit log information and uses a combination of causal graphs and deep learning techniques to perform predictive analysis of APT. The study focuses on two different methods of constructing malicious activity scenarios, including those based on malicious entity evolving graphs and malicious entity neighborhood graphs. Deep learning networks are then utilized to learn from past malicious activity scenarios and predict specific malicious attack events. To validate the effectiveness of this approach, audit log data published by DARPA’s Transparent Computing Program and restored by ATLAS are used to demonstrate the confidence of the prediction results and recommend the most effective malicious event prediction by Top-N." @default.
- W4365514648 created "2023-04-15" @default.
- W4365514648 creator A5052842328 @default.
- W4365514648 creator A5091107196 @default.
- W4365514648 date "2023-04-13" @default.
- W4365514648 modified "2023-09-27" @default.
- W4365514648 title "A Causal Graph-Based Approach for APT Predictive Analytics" @default.
- W4365514648 cites W1575376224 @default.
- W4365514648 cites W1970903699 @default.
- W4365514648 cites W2083658929 @default.
- W4365514648 cites W2154081981 @default.
- W4365514648 cites W2246402135 @default.
- W4365514648 cites W2532844970 @default.
- W4365514648 cites W2579106964 @default.
- W4365514648 cites W2741097829 @default.
- W4365514648 cites W2755588949 @default.
- W4365514648 cites W2767011015 @default.
- W4365514648 cites W2767094836 @default.
- W4365514648 cites W2790557990 @default.
- W4365514648 cites W2790843555 @default.
- W4365514648 cites W2799123556 @default.
- W4365514648 cites W2884001105 @default.
- W4365514648 cites W2885999345 @default.
- W4365514648 cites W2889379876 @default.
- W4365514648 cites W2947745012 @default.
- W4365514648 cites W2959653735 @default.
- W4365514648 cites W2982614372 @default.
- W4365514648 cites W2986944522 @default.
- W4365514648 cites W3081829214 @default.
- W4365514648 cites W3099203541 @default.
- W4365514648 cites W3105780912 @default.
- W4365514648 cites W3126165507 @default.
- W4365514648 cites W3214329506 @default.
- W4365514648 cites W4206266728 @default.
- W4365514648 cites W4245671428 @default.
- W4365514648 cites W4281385662 @default.
- W4365514648 cites W4285296268 @default.
- W4365514648 doi "https://doi.org/10.3390/electronics12081849" @default.
- W4365514648 hasPublicationYear "2023" @default.
- W4365514648 type Work @default.
- W4365514648 citedByCount "0" @default.
- W4365514648 crossrefType "journal-article" @default.
- W4365514648 hasAuthorship W4365514648A5052842328 @default.
- W4365514648 hasAuthorship W4365514648A5091107196 @default.
- W4365514648 hasBestOaLocation W43655146481 @default.
- W4365514648 hasConcept C119857082 @default.
- W4365514648 hasConcept C124101348 @default.
- W4365514648 hasConcept C132525143 @default.
- W4365514648 hasConcept C154945302 @default.
- W4365514648 hasConcept C162324750 @default.
- W4365514648 hasConcept C187736073 @default.
- W4365514648 hasConcept C199521495 @default.
- W4365514648 hasConcept C2522767166 @default.
- W4365514648 hasConcept C41008148 @default.
- W4365514648 hasConcept C79158427 @default.
- W4365514648 hasConcept C80444323 @default.
- W4365514648 hasConcept C80958533 @default.
- W4365514648 hasConcept C83209312 @default.
- W4365514648 hasConceptScore W4365514648C119857082 @default.
- W4365514648 hasConceptScore W4365514648C124101348 @default.
- W4365514648 hasConceptScore W4365514648C132525143 @default.
- W4365514648 hasConceptScore W4365514648C154945302 @default.
- W4365514648 hasConceptScore W4365514648C162324750 @default.
- W4365514648 hasConceptScore W4365514648C187736073 @default.
- W4365514648 hasConceptScore W4365514648C199521495 @default.
- W4365514648 hasConceptScore W4365514648C2522767166 @default.
- W4365514648 hasConceptScore W4365514648C41008148 @default.
- W4365514648 hasConceptScore W4365514648C79158427 @default.
- W4365514648 hasConceptScore W4365514648C80444323 @default.
- W4365514648 hasConceptScore W4365514648C80958533 @default.
- W4365514648 hasConceptScore W4365514648C83209312 @default.
- W4365514648 hasIssue "8" @default.
- W4365514648 hasLocation W43655146481 @default.
- W4365514648 hasOpenAccess W4365514648 @default.
- W4365514648 hasPrimaryLocation W43655146481 @default.
- W4365514648 hasRelatedWork W1993137173 @default.
- W4365514648 hasRelatedWork W2564406132 @default.
- W4365514648 hasRelatedWork W2809858895 @default.
- W4365514648 hasRelatedWork W2920908702 @default.
- W4365514648 hasRelatedWork W2956296183 @default.
- W4365514648 hasRelatedWork W2998881927 @default.
- W4365514648 hasRelatedWork W3045712971 @default.
- W4365514648 hasRelatedWork W3138622659 @default.
- W4365514648 hasRelatedWork W4310083754 @default.
- W4365514648 hasRelatedWork W4322484627 @default.
- W4365514648 hasVolume "12" @default.
- W4365514648 isParatext "false" @default.
- W4365514648 isRetracted "false" @default.
- W4365514648 workType "article" @default.