Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365597308> ?p ?o ?g. }
- W4365597308 abstract "Abstract Uncertainty reduction in watershed water quality (WWQ) modeling remains a major challenge. One important reason is the lack of sufficient available water quality observations because traditional laboratory analysis of water samples has high labor, financial and time costs. Low‐cost high‐frequency water quality data from in‐situ sensors provide an opportunity to solve this problem. However, long‐term sensing in complex natural environments usually suffers more significant errors. This study aimed to develop a novel method to utilize in‐situ sensor data in WWQ modeling, namely, the Bayesian calibration using multisource observations (BCMSO), which can simultaneously assimilate laboratory‐based observations and in‐situ sensor data. Both synthetic and real‐world cases of nitrate modeling were used to demonstrate the methodology, and the Soil and Water Assessment Tool was employed as the WWQ model. The results indicated that direct assimilation of sensor data using traditional Bayesian calibration generated obvious deviations in parameter inference and model simulation, which could consequently bias future predictions and affect management decision correctness. However, after proper treatment of errors in sensor data, the BCMSO method could extract meaningful information from sensor data and prevent negative impacts of errors. The modeling uncertainty was also greatly reduced. In the real‐world case, with 1 yr of subhourly electrical conductivity sensor data incorporated, the modeling uncertainty of nitrate concentration and management cost of controlling nitrate pollution were reduced by 70%. The BCMSO method provides a flexible framework to accommodate nonconventional observations in environmental modeling and can be easily extended to other modeling fields." @default.
- W4365597308 created "2023-04-15" @default.
- W4365597308 creator A5000970532 @default.
- W4365597308 creator A5007603538 @default.
- W4365597308 creator A5042808252 @default.
- W4365597308 creator A5042998154 @default.
- W4365597308 creator A5046127749 @default.
- W4365597308 creator A5078341159 @default.
- W4365597308 date "2023-04-01" @default.
- W4365597308 modified "2023-10-12" @default.
- W4365597308 title "Assimilating Low‐Cost High‐Frequency Sensor Data in Watershed Water Quality Modeling: A Bayesian Approach" @default.
- W4365597308 cites W1481511658 @default.
- W4365597308 cites W1521027252 @default.
- W4365597308 cites W1527594523 @default.
- W4365597308 cites W1544278534 @default.
- W4365597308 cites W1571952583 @default.
- W4365597308 cites W1754423787 @default.
- W4365597308 cites W1963535877 @default.
- W4365597308 cites W1964942064 @default.
- W4365597308 cites W1976122240 @default.
- W4365597308 cites W1978476943 @default.
- W4365597308 cites W1991921673 @default.
- W4365597308 cites W2013596835 @default.
- W4365597308 cites W2033904036 @default.
- W4365597308 cites W2037825302 @default.
- W4365597308 cites W2053374872 @default.
- W4365597308 cites W2081346522 @default.
- W4365597308 cites W2114291377 @default.
- W4365597308 cites W2117681582 @default.
- W4365597308 cites W2119179880 @default.
- W4365597308 cites W2123677000 @default.
- W4365597308 cites W2133778423 @default.
- W4365597308 cites W2141755357 @default.
- W4365597308 cites W2147746661 @default.
- W4365597308 cites W2148534890 @default.
- W4365597308 cites W2192771080 @default.
- W4365597308 cites W2292233232 @default.
- W4365597308 cites W2325800586 @default.
- W4365597308 cites W2604745134 @default.
- W4365597308 cites W2744015939 @default.
- W4365597308 cites W2756393603 @default.
- W4365597308 cites W2767556447 @default.
- W4365597308 cites W2796759652 @default.
- W4365597308 cites W2801638617 @default.
- W4365597308 cites W2896072520 @default.
- W4365597308 cites W2902048771 @default.
- W4365597308 cites W2906092654 @default.
- W4365597308 cites W2943541449 @default.
- W4365597308 cites W3003243811 @default.
- W4365597308 cites W3006326026 @default.
- W4365597308 cites W3013886221 @default.
- W4365597308 cites W3040570510 @default.
- W4365597308 cites W3190780366 @default.
- W4365597308 cites W3194555249 @default.
- W4365597308 cites W3214121156 @default.
- W4365597308 cites W4206192563 @default.
- W4365597308 cites W651094785 @default.
- W4365597308 cites W999207820 @default.
- W4365597308 doi "https://doi.org/10.1029/2022wr033673" @default.
- W4365597308 hasPublicationYear "2023" @default.
- W4365597308 type Work @default.
- W4365597308 citedByCount "0" @default.
- W4365597308 crossrefType "journal-article" @default.
- W4365597308 hasAuthorship W4365597308A5000970532 @default.
- W4365597308 hasAuthorship W4365597308A5007603538 @default.
- W4365597308 hasAuthorship W4365597308A5042808252 @default.
- W4365597308 hasAuthorship W4365597308A5042998154 @default.
- W4365597308 hasAuthorship W4365597308A5046127749 @default.
- W4365597308 hasAuthorship W4365597308A5078341159 @default.
- W4365597308 hasConcept C105795698 @default.
- W4365597308 hasConcept C107673813 @default.
- W4365597308 hasConcept C11413529 @default.
- W4365597308 hasConcept C119857082 @default.
- W4365597308 hasConcept C121332964 @default.
- W4365597308 hasConcept C124101348 @default.
- W4365597308 hasConcept C127413603 @default.
- W4365597308 hasConcept C150547873 @default.
- W4365597308 hasConcept C153294291 @default.
- W4365597308 hasConcept C154945302 @default.
- W4365597308 hasConcept C160234255 @default.
- W4365597308 hasConcept C160920958 @default.
- W4365597308 hasConcept C165838908 @default.
- W4365597308 hasConcept C176217482 @default.
- W4365597308 hasConcept C18903297 @default.
- W4365597308 hasConcept C21547014 @default.
- W4365597308 hasConcept C24552861 @default.
- W4365597308 hasConcept C24756922 @default.
- W4365597308 hasConcept C2780797713 @default.
- W4365597308 hasConcept C33923547 @default.
- W4365597308 hasConcept C39432304 @default.
- W4365597308 hasConcept C41008148 @default.
- W4365597308 hasConcept C55439883 @default.
- W4365597308 hasConcept C86803240 @default.
- W4365597308 hasConceptScore W4365597308C105795698 @default.
- W4365597308 hasConceptScore W4365597308C107673813 @default.
- W4365597308 hasConceptScore W4365597308C11413529 @default.
- W4365597308 hasConceptScore W4365597308C119857082 @default.
- W4365597308 hasConceptScore W4365597308C121332964 @default.
- W4365597308 hasConceptScore W4365597308C124101348 @default.
- W4365597308 hasConceptScore W4365597308C127413603 @default.