Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365788540> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4365788540 abstract "This research aims to use data classification, image classification, and the ensemble approach to classify and predict benign or malignant cancer cells, therefore lowering the time and expense involved with breast cancer screening. The dataset used in data classification was augmented using the Data Augmentation approach, and the augmented data is then separated into train, test, and validation. The model is then trained using CNN, SVM, KNN, and Random Forest algorithms, after which it is verified with the test data and validation parts of the dataset. The image classification models are trained using CNN and Random Forest algorithms then the models are validated by predicting images of different dataset image to check if a cell is benign or malignant. In data classification after 50 epochs of training, an accuracy of 94.73 percent was achieved for CNN in categorizing data, 92.98 percent for SVM, 90.87 percent for KNN, and 95.3 percent for Random Forest, in image classification 92.36 percent for CNN and 93.28 percent for Random Forest are achieved." @default.
- W4365788540 created "2023-04-16" @default.
- W4365788540 creator A5025841778 @default.
- W4365788540 creator A5032048612 @default.
- W4365788540 creator A5066899753 @default.
- W4365788540 creator A5086947200 @default.
- W4365788540 date "2022-11-25" @default.
- W4365788540 modified "2023-09-28" @default.
- W4365788540 title "Breast Cancer Classification Using Ensemble Approach, Machine Learning and Deep Learning" @default.
- W4365788540 cites W1596717185 @default.
- W4365788540 cites W1619226191 @default.
- W4365788540 cites W1983024255 @default.
- W4365788540 cites W2004320486 @default.
- W4365788540 cites W2056137745 @default.
- W4365788540 cites W2086530527 @default.
- W4365788540 cites W2089927030 @default.
- W4365788540 cites W2094040550 @default.
- W4365788540 cites W2109638028 @default.
- W4365788540 cites W2754931367 @default.
- W4365788540 cites W2766272877 @default.
- W4365788540 cites W2915997673 @default.
- W4365788540 cites W2942232960 @default.
- W4365788540 cites W2974065643 @default.
- W4365788540 cites W2980030301 @default.
- W4365788540 cites W2983506648 @default.
- W4365788540 cites W2990910383 @default.
- W4365788540 cites W2992718816 @default.
- W4365788540 cites W2995329474 @default.
- W4365788540 cites W3002446410 @default.
- W4365788540 cites W3095532857 @default.
- W4365788540 cites W3172138850 @default.
- W4365788540 doi "https://doi.org/10.1109/incoft55651.2022.10094372" @default.
- W4365788540 hasPublicationYear "2022" @default.
- W4365788540 type Work @default.
- W4365788540 citedByCount "0" @default.
- W4365788540 crossrefType "proceedings-article" @default.
- W4365788540 hasAuthorship W4365788540A5025841778 @default.
- W4365788540 hasAuthorship W4365788540A5032048612 @default.
- W4365788540 hasAuthorship W4365788540A5066899753 @default.
- W4365788540 hasAuthorship W4365788540A5086947200 @default.
- W4365788540 hasConcept C110083411 @default.
- W4365788540 hasConcept C115961682 @default.
- W4365788540 hasConcept C119857082 @default.
- W4365788540 hasConcept C12267149 @default.
- W4365788540 hasConcept C153180895 @default.
- W4365788540 hasConcept C154945302 @default.
- W4365788540 hasConcept C16910744 @default.
- W4365788540 hasConcept C169258074 @default.
- W4365788540 hasConcept C199360897 @default.
- W4365788540 hasConcept C41008148 @default.
- W4365788540 hasConcept C45942800 @default.
- W4365788540 hasConcept C75294576 @default.
- W4365788540 hasConceptScore W4365788540C110083411 @default.
- W4365788540 hasConceptScore W4365788540C115961682 @default.
- W4365788540 hasConceptScore W4365788540C119857082 @default.
- W4365788540 hasConceptScore W4365788540C12267149 @default.
- W4365788540 hasConceptScore W4365788540C153180895 @default.
- W4365788540 hasConceptScore W4365788540C154945302 @default.
- W4365788540 hasConceptScore W4365788540C16910744 @default.
- W4365788540 hasConceptScore W4365788540C169258074 @default.
- W4365788540 hasConceptScore W4365788540C199360897 @default.
- W4365788540 hasConceptScore W4365788540C41008148 @default.
- W4365788540 hasConceptScore W4365788540C45942800 @default.
- W4365788540 hasConceptScore W4365788540C75294576 @default.
- W4365788540 hasLocation W43657885401 @default.
- W4365788540 hasOpenAccess W4365788540 @default.
- W4365788540 hasPrimaryLocation W43657885401 @default.
- W4365788540 hasRelatedWork W3004377704 @default.
- W4365788540 hasRelatedWork W3120965611 @default.
- W4365788540 hasRelatedWork W3217110323 @default.
- W4365788540 hasRelatedWork W4213444042 @default.
- W4365788540 hasRelatedWork W4226398573 @default.
- W4365788540 hasRelatedWork W4282601365 @default.
- W4365788540 hasRelatedWork W4282839226 @default.
- W4365788540 hasRelatedWork W4283016678 @default.
- W4365788540 hasRelatedWork W4316087365 @default.
- W4365788540 hasRelatedWork W4361733296 @default.
- W4365788540 isParatext "false" @default.
- W4365788540 isRetracted "false" @default.
- W4365788540 workType "article" @default.