Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365800504> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4365800504 abstract "Food security is always one of the most important factors in human lives, and crop diseases are one of the major threats which may bring potential damage. Nowadays, with the proliferation of smartphones and the advancement of machine learning methods, it is more likely to achieve rapid identification of disease diagnosis by a smartphone-assisted application supported by deep learning trained models. By comparing different datasets and different kinds of CNN frameworks, this paper trained deep convolutional neural networks based on plant leaves’ images to identify species and detect diseases. Furthermore, this paper found the best combination of different datasets with the highest accuracy. The highest accuracy this work got is 97.37%, using ResNet-9 along with Transfer Learning. Nevertheless, these training datasets are too straightforward to deal with the more complex real-world situation. Besides, two-dimensional datasets from time to time have such limited information; therefore, more information is needed to diagnose plants’ diseases. For future extension, this work can apply not only image datasets but also environmental factors, such as soil structure and image background, to construct a more precise model to diagnose plant diseases. Hence, the concept of Point Cloud will be discussed in this paper. This work can be viewed as the first step to build an Energy-friendly plant disease classification application supporting sustainability." @default.
- W4365800504 created "2023-04-16" @default.
- W4365800504 creator A5039127781 @default.
- W4365800504 creator A5042413407 @default.
- W4365800504 creator A5044547595 @default.
- W4365800504 creator A5049561857 @default.
- W4365800504 date "2022-11-25" @default.
- W4365800504 modified "2023-09-28" @default.
- W4365800504 title "Implement Deep Learning Networks with Transfer Learning to Develop Energy-friendly Applications Supporting Sustainability on Image-based Plant Disease Classification" @default.
- W4365800504 cites W2801013643 @default.
- W4365800504 cites W2904726360 @default.
- W4365800504 cites W3126236051 @default.
- W4365800504 cites W3215490101 @default.
- W4365800504 doi "https://doi.org/10.1145/3582084.3582095" @default.
- W4365800504 hasPublicationYear "2022" @default.
- W4365800504 type Work @default.
- W4365800504 citedByCount "0" @default.
- W4365800504 crossrefType "proceedings-article" @default.
- W4365800504 hasAuthorship W4365800504A5039127781 @default.
- W4365800504 hasAuthorship W4365800504A5042413407 @default.
- W4365800504 hasAuthorship W4365800504A5044547595 @default.
- W4365800504 hasAuthorship W4365800504A5049561857 @default.
- W4365800504 hasConcept C108583219 @default.
- W4365800504 hasConcept C111919701 @default.
- W4365800504 hasConcept C115961682 @default.
- W4365800504 hasConcept C116834253 @default.
- W4365800504 hasConcept C119857082 @default.
- W4365800504 hasConcept C150899416 @default.
- W4365800504 hasConcept C150903083 @default.
- W4365800504 hasConcept C154945302 @default.
- W4365800504 hasConcept C18903297 @default.
- W4365800504 hasConcept C199360897 @default.
- W4365800504 hasConcept C2780801425 @default.
- W4365800504 hasConcept C3019235130 @default.
- W4365800504 hasConcept C41008148 @default.
- W4365800504 hasConcept C59822182 @default.
- W4365800504 hasConcept C66204764 @default.
- W4365800504 hasConcept C75294576 @default.
- W4365800504 hasConcept C79974875 @default.
- W4365800504 hasConcept C81363708 @default.
- W4365800504 hasConcept C86803240 @default.
- W4365800504 hasConceptScore W4365800504C108583219 @default.
- W4365800504 hasConceptScore W4365800504C111919701 @default.
- W4365800504 hasConceptScore W4365800504C115961682 @default.
- W4365800504 hasConceptScore W4365800504C116834253 @default.
- W4365800504 hasConceptScore W4365800504C119857082 @default.
- W4365800504 hasConceptScore W4365800504C150899416 @default.
- W4365800504 hasConceptScore W4365800504C150903083 @default.
- W4365800504 hasConceptScore W4365800504C154945302 @default.
- W4365800504 hasConceptScore W4365800504C18903297 @default.
- W4365800504 hasConceptScore W4365800504C199360897 @default.
- W4365800504 hasConceptScore W4365800504C2780801425 @default.
- W4365800504 hasConceptScore W4365800504C3019235130 @default.
- W4365800504 hasConceptScore W4365800504C41008148 @default.
- W4365800504 hasConceptScore W4365800504C59822182 @default.
- W4365800504 hasConceptScore W4365800504C66204764 @default.
- W4365800504 hasConceptScore W4365800504C75294576 @default.
- W4365800504 hasConceptScore W4365800504C79974875 @default.
- W4365800504 hasConceptScore W4365800504C81363708 @default.
- W4365800504 hasConceptScore W4365800504C86803240 @default.
- W4365800504 hasLocation W43658005041 @default.
- W4365800504 hasOpenAccess W4365800504 @default.
- W4365800504 hasPrimaryLocation W43658005041 @default.
- W4365800504 hasRelatedWork W2470368200 @default.
- W4365800504 hasRelatedWork W2799614062 @default.
- W4365800504 hasRelatedWork W2963958939 @default.
- W4365800504 hasRelatedWork W2997709384 @default.
- W4365800504 hasRelatedWork W3003750976 @default.
- W4365800504 hasRelatedWork W3118457286 @default.
- W4365800504 hasRelatedWork W3189091156 @default.
- W4365800504 hasRelatedWork W4220996320 @default.
- W4365800504 hasRelatedWork W4281382123 @default.
- W4365800504 hasRelatedWork W4311257506 @default.
- W4365800504 isParatext "false" @default.
- W4365800504 isRetracted "false" @default.
- W4365800504 workType "article" @default.