Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365813758> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4365813758 abstract "Abstract In the present scenario, developing an automatic and credible diagnostic system to analyze lung cancer type, stage, and level from computed tomography (C.T.) images is a very challenging task, even for experienced pathologists, due to the nonuniform illumination and artifacts. The nonuniform illumination and artifacts are the low‐frequency changes in image intensity that arise from the sensor and the person's movement while recording the C.T. scanned images. Although numerous machine learning techniques are used to improve the effectiveness of automatic lung cancer diagnostic systems, the classification accuracy of these systems still needs significant improvement to satisfy the real‐time requirement of the diagnostic situations. A new extreme learning machine (ELM) algorithm‐based model (hereafter called XlmNet) is proposed to classify the histopathology scans effectively. XlmNet utilizes The Cancer Imaging Archive (TCIA) dataset. After data collection, the initial stage in XlmNet is preprocessing, including noise removal, histogram equalization, and quality‐improved image. The enhanced Profuse Clustering (EPC) method is implemented for segmenting the affected regions from C.T. scans by image segment using superpixel clustering. The statistical attributes are extracted by using Principal Component Analysis (PCA). ELM classifier helps in classifying the lung nodules. The empirical results of the XlmNet model are related to some advanced classifiers concerning performance metrics. The evaluations of XlmNet on the TCIA dataset reveal that XlmNet outperforms other classification networks with the Accuracy of 0.965, a sensitivity of 0.964, a specificity of 0.865, a precision of 0.962, a Jaccard similarity score (JSS) of 0.95." @default.
- W4365813758 created "2023-04-16" @default.
- W4365813758 creator A5016965879 @default.
- W4365813758 creator A5032918294 @default.
- W4365813758 date "2023-04-14" @default.
- W4365813758 modified "2023-10-17" @default.
- W4365813758 title "Extreme learning machine algorithm‐based model for lung cancer classification from histopathological real‐time images" @default.
- W4365813758 cites W1969480100 @default.
- W4365813758 cites W2139277921 @default.
- W4365813758 cites W2208036992 @default.
- W4365813758 cites W2508007471 @default.
- W4365813758 cites W2752625590 @default.
- W4365813758 cites W2753086770 @default.
- W4365813758 cites W2761550237 @default.
- W4365813758 cites W2801761532 @default.
- W4365813758 cites W2887808321 @default.
- W4365813758 cites W2981208420 @default.
- W4365813758 cites W2995930642 @default.
- W4365813758 cites W3046874697 @default.
- W4365813758 cites W3097040800 @default.
- W4365813758 cites W3129739079 @default.
- W4365813758 cites W3130476209 @default.
- W4365813758 cites W3190896468 @default.
- W4365813758 cites W4200542843 @default.
- W4365813758 cites W4205344436 @default.
- W4365813758 cites W4211225073 @default.
- W4365813758 cites W4235500975 @default.
- W4365813758 cites W4282972434 @default.
- W4365813758 cites W4312631833 @default.
- W4365813758 doi "https://doi.org/10.1111/coin.12576" @default.
- W4365813758 hasPublicationYear "2023" @default.
- W4365813758 type Work @default.
- W4365813758 citedByCount "1" @default.
- W4365813758 countsByYear W43658137582023 @default.
- W4365813758 crossrefType "journal-article" @default.
- W4365813758 hasAuthorship W4365813758A5016965879 @default.
- W4365813758 hasAuthorship W4365813758A5032918294 @default.
- W4365813758 hasConcept C115961682 @default.
- W4365813758 hasConcept C136943445 @default.
- W4365813758 hasConcept C153180895 @default.
- W4365813758 hasConcept C154945302 @default.
- W4365813758 hasConcept C203519979 @default.
- W4365813758 hasConcept C27438332 @default.
- W4365813758 hasConcept C2780150128 @default.
- W4365813758 hasConcept C30387639 @default.
- W4365813758 hasConcept C34736171 @default.
- W4365813758 hasConcept C41008148 @default.
- W4365813758 hasConcept C50644808 @default.
- W4365813758 hasConcept C53533937 @default.
- W4365813758 hasConcept C73555534 @default.
- W4365813758 hasConcept C95623464 @default.
- W4365813758 hasConceptScore W4365813758C115961682 @default.
- W4365813758 hasConceptScore W4365813758C136943445 @default.
- W4365813758 hasConceptScore W4365813758C153180895 @default.
- W4365813758 hasConceptScore W4365813758C154945302 @default.
- W4365813758 hasConceptScore W4365813758C203519979 @default.
- W4365813758 hasConceptScore W4365813758C27438332 @default.
- W4365813758 hasConceptScore W4365813758C2780150128 @default.
- W4365813758 hasConceptScore W4365813758C30387639 @default.
- W4365813758 hasConceptScore W4365813758C34736171 @default.
- W4365813758 hasConceptScore W4365813758C41008148 @default.
- W4365813758 hasConceptScore W4365813758C50644808 @default.
- W4365813758 hasConceptScore W4365813758C53533937 @default.
- W4365813758 hasConceptScore W4365813758C73555534 @default.
- W4365813758 hasConceptScore W4365813758C95623464 @default.
- W4365813758 hasLocation W43658137581 @default.
- W4365813758 hasOpenAccess W4365813758 @default.
- W4365813758 hasPrimaryLocation W43658137581 @default.
- W4365813758 hasRelatedWork W1583737874 @default.
- W4365813758 hasRelatedWork W2024449420 @default.
- W4365813758 hasRelatedWork W2057981026 @default.
- W4365813758 hasRelatedWork W2122866860 @default.
- W4365813758 hasRelatedWork W2134986978 @default.
- W4365813758 hasRelatedWork W2165297163 @default.
- W4365813758 hasRelatedWork W2256021896 @default.
- W4365813758 hasRelatedWork W2398368608 @default.
- W4365813758 hasRelatedWork W3084145657 @default.
- W4365813758 hasRelatedWork W4309786676 @default.
- W4365813758 isParatext "false" @default.
- W4365813758 isRetracted "false" @default.
- W4365813758 workType "article" @default.