Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365814113> ?p ?o ?g. }
- W4365814113 endingPage "106939" @default.
- W4365814113 startingPage "106939" @default.
- W4365814113 abstract "With the rapid development of single-cell RNA-sequencing techniques, various computational methods and tools were proposed to analyze these high-throughput data, which led to an accelerated reveal of potential biological information. As one of the core steps of single-cell transcriptome data analysis, clustering plays a crucial role in identifying cell types and interpreting cellular heterogeneity. However, the results generated by different clustering methods showed distinguishing, and those unstable partitions can affect the accuracy of the analysis to a certain extent. To overcome this challenge and obtain more accurate results, currently clustering ensemble is frequently applied to cluster analysis of single-cell transcriptome datasets, and the results generated by all clustering ensembles are nearly more reliable than those from most of the single clustering partitions. In this review, we summarize applications and challenges of the clustering ensemble method in single-cell transcriptome data analysis, and provide constructive thoughts and references for researchers in this field." @default.
- W4365814113 created "2023-04-16" @default.
- W4365814113 creator A5017014714 @default.
- W4365814113 creator A5034995105 @default.
- W4365814113 creator A5054540808 @default.
- W4365814113 creator A5063201346 @default.
- W4365814113 creator A5083317836 @default.
- W4365814113 creator A5085838661 @default.
- W4365814113 creator A5088436734 @default.
- W4365814113 date "2023-06-01" @default.
- W4365814113 modified "2023-10-02" @default.
- W4365814113 title "Clustering ensemble in scRNA-seq data analysis: Methods, applications and challenges" @default.
- W4365814113 cites W1580018887 @default.
- W4365814113 cites W1631320694 @default.
- W4365814113 cites W2068881679 @default.
- W4365814113 cites W2073256527 @default.
- W4365814113 cites W2422558391 @default.
- W4365814113 cites W2598326928 @default.
- W4365814113 cites W2603523955 @default.
- W4365814113 cites W2605018929 @default.
- W4365814113 cites W2612194812 @default.
- W4365814113 cites W2614935527 @default.
- W4365814113 cites W2743416243 @default.
- W4365814113 cites W2751468300 @default.
- W4365814113 cites W2766959028 @default.
- W4365814113 cites W2788348358 @default.
- W4365814113 cites W2894687190 @default.
- W4365814113 cites W2907783748 @default.
- W4365814113 cites W2926010705 @default.
- W4365814113 cites W2937917790 @default.
- W4365814113 cites W2945823867 @default.
- W4365814113 cites W2946232537 @default.
- W4365814113 cites W2949237386 @default.
- W4365814113 cites W2951337536 @default.
- W4365814113 cites W2955621471 @default.
- W4365814113 cites W2968073395 @default.
- W4365814113 cites W2980870427 @default.
- W4365814113 cites W2991044536 @default.
- W4365814113 cites W2993894543 @default.
- W4365814113 cites W2997038947 @default.
- W4365814113 cites W3000010184 @default.
- W4365814113 cites W3002077664 @default.
- W4365814113 cites W3003444384 @default.
- W4365814113 cites W3018049863 @default.
- W4365814113 cites W3032847236 @default.
- W4365814113 cites W3033054589 @default.
- W4365814113 cites W3110470384 @default.
- W4365814113 cites W3111222208 @default.
- W4365814113 cites W3130098356 @default.
- W4365814113 cites W3135900081 @default.
- W4365814113 cites W3137285774 @default.
- W4365814113 cites W3147234347 @default.
- W4365814113 cites W3170841857 @default.
- W4365814113 cites W3173371682 @default.
- W4365814113 cites W3173648257 @default.
- W4365814113 cites W3183630498 @default.
- W4365814113 cites W3197945601 @default.
- W4365814113 cites W3201051999 @default.
- W4365814113 cites W4200138119 @default.
- W4365814113 cites W4200399026 @default.
- W4365814113 cites W4200514377 @default.
- W4365814113 cites W4205428105 @default.
- W4365814113 cites W4210840193 @default.
- W4365814113 cites W4224215080 @default.
- W4365814113 cites W4224290649 @default.
- W4365814113 cites W4225149814 @default.
- W4365814113 cites W4226031055 @default.
- W4365814113 cites W4285404250 @default.
- W4365814113 cites W4285729760 @default.
- W4365814113 doi "https://doi.org/10.1016/j.compbiomed.2023.106939" @default.
- W4365814113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37075602" @default.
- W4365814113 hasPublicationYear "2023" @default.
- W4365814113 type Work @default.
- W4365814113 citedByCount "2" @default.
- W4365814113 countsByYear W43658141132023 @default.
- W4365814113 crossrefType "journal-article" @default.
- W4365814113 hasAuthorship W4365814113A5017014714 @default.
- W4365814113 hasAuthorship W4365814113A5034995105 @default.
- W4365814113 hasAuthorship W4365814113A5054540808 @default.
- W4365814113 hasAuthorship W4365814113A5063201346 @default.
- W4365814113 hasAuthorship W4365814113A5083317836 @default.
- W4365814113 hasAuthorship W4365814113A5085838661 @default.
- W4365814113 hasAuthorship W4365814113A5088436734 @default.
- W4365814113 hasConcept C124101348 @default.
- W4365814113 hasConcept C154945302 @default.
- W4365814113 hasConcept C164866538 @default.
- W4365814113 hasConcept C184509293 @default.
- W4365814113 hasConcept C186767784 @default.
- W4365814113 hasConcept C199360897 @default.
- W4365814113 hasConcept C202444582 @default.
- W4365814113 hasConcept C33704608 @default.
- W4365814113 hasConcept C33923547 @default.
- W4365814113 hasConcept C41008148 @default.
- W4365814113 hasConcept C73555534 @default.
- W4365814113 hasConcept C94641424 @default.
- W4365814113 hasConcept C9652623 @default.
- W4365814113 hasConceptScore W4365814113C124101348 @default.
- W4365814113 hasConceptScore W4365814113C154945302 @default.