Matches in SemOpenAlex for { <https://semopenalex.org/work/W4365816072> ?p ?o ?g. }
- W4365816072 abstract "Abstract Drug combinations can be the prime strategy for increasing the initial treatment options in cancer therapy. However, identifying the combinations through experimental approaches is very laborious and costly. Notably, in vitro and/or in vivo examination of all the possible combinations might not be plausible. This study presented a novel computational approach to predicting synergistic drug combinations. Specifically, the deep neural network-based binary classification was utilized to develop the model. Various physicochemical, genomic, protein–protein interaction and protein-metabolite interaction information were used to predict the synergy effects of the combinations of different drugs. The performance of the constructed model was compared with shallow neural network (SNN), k-nearest neighbors (KNN), random forest (RF), support vector machines (SVMs), and gradient boosting classifiers (GBC). Based on our findings, the proposed deep neural network model was found to be capable of predicting synergistic drug combinations with high accuracy. The prediction accuracy and AUC metrics for this model were 92.21% and 97.32% in tenfold cross-validation. According to the results, the integration of different types of physicochemical and genomics features leads to more accurate prediction of synergy in cancer drugs." @default.
- W4365816072 created "2023-04-16" @default.
- W4365816072 creator A5018107560 @default.
- W4365816072 creator A5031279238 @default.
- W4365816072 creator A5044298345 @default.
- W4365816072 date "2023-04-15" @default.
- W4365816072 modified "2023-09-30" @default.
- W4365816072 title "SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy" @default.
- W4365816072 cites W1578932543 @default.
- W4365816072 cites W2036291018 @default.
- W4365816072 cites W2092581985 @default.
- W4365816072 cites W2096306846 @default.
- W4365816072 cites W2106391842 @default.
- W4365816072 cites W2118151336 @default.
- W4365816072 cites W2131487381 @default.
- W4365816072 cites W2146416540 @default.
- W4365816072 cites W2150289099 @default.
- W4365816072 cites W2165681080 @default.
- W4365816072 cites W2170146596 @default.
- W4365816072 cites W2252158617 @default.
- W4365816072 cites W2267040404 @default.
- W4365816072 cites W2311607323 @default.
- W4365816072 cites W2461427403 @default.
- W4365816072 cites W2599717252 @default.
- W4365816072 cites W2604539562 @default.
- W4365816072 cites W2608081584 @default.
- W4365816072 cites W2608863179 @default.
- W4365816072 cites W2621361707 @default.
- W4365816072 cites W2775061087 @default.
- W4365816072 cites W2883248903 @default.
- W4365816072 cites W2900960361 @default.
- W4365816072 cites W2906092989 @default.
- W4365816072 cites W2910362090 @default.
- W4365816072 cites W2912041567 @default.
- W4365816072 cites W2938150871 @default.
- W4365816072 cites W2949524414 @default.
- W4365816072 cites W2960677646 @default.
- W4365816072 cites W2975867066 @default.
- W4365816072 cites W3000629489 @default.
- W4365816072 cites W3005128856 @default.
- W4365816072 cites W3006386963 @default.
- W4365816072 cites W3031514813 @default.
- W4365816072 cites W3032089175 @default.
- W4365816072 cites W3048065091 @default.
- W4365816072 cites W3086347240 @default.
- W4365816072 cites W3088047400 @default.
- W4365816072 cites W3094540299 @default.
- W4365816072 cites W3127930610 @default.
- W4365816072 cites W3128646645 @default.
- W4365816072 cites W3150996528 @default.
- W4365816072 cites W3159462434 @default.
- W4365816072 cites W3174005399 @default.
- W4365816072 cites W3189189889 @default.
- W4365816072 cites W3194730353 @default.
- W4365816072 cites W3209188285 @default.
- W4365816072 cites W4212799760 @default.
- W4365816072 cites W4212966936 @default.
- W4365816072 cites W4223433895 @default.
- W4365816072 cites W4297064879 @default.
- W4365816072 doi "https://doi.org/10.1038/s41598-023-33271-3" @default.
- W4365816072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37061563" @default.
- W4365816072 hasPublicationYear "2023" @default.
- W4365816072 type Work @default.
- W4365816072 citedByCount "0" @default.
- W4365816072 crossrefType "journal-article" @default.
- W4365816072 hasAuthorship W4365816072A5018107560 @default.
- W4365816072 hasAuthorship W4365816072A5031279238 @default.
- W4365816072 hasAuthorship W4365816072A5044298345 @default.
- W4365816072 hasBestOaLocation W43658160721 @default.
- W4365816072 hasConcept C108583219 @default.
- W4365816072 hasConcept C119857082 @default.
- W4365816072 hasConcept C12267149 @default.
- W4365816072 hasConcept C154945302 @default.
- W4365816072 hasConcept C169258074 @default.
- W4365816072 hasConcept C27181475 @default.
- W4365816072 hasConcept C41008148 @default.
- W4365816072 hasConcept C46686674 @default.
- W4365816072 hasConcept C50644808 @default.
- W4365816072 hasConcept C66905080 @default.
- W4365816072 hasConcept C70153297 @default.
- W4365816072 hasConceptScore W4365816072C108583219 @default.
- W4365816072 hasConceptScore W4365816072C119857082 @default.
- W4365816072 hasConceptScore W4365816072C12267149 @default.
- W4365816072 hasConceptScore W4365816072C154945302 @default.
- W4365816072 hasConceptScore W4365816072C169258074 @default.
- W4365816072 hasConceptScore W4365816072C27181475 @default.
- W4365816072 hasConceptScore W4365816072C41008148 @default.
- W4365816072 hasConceptScore W4365816072C46686674 @default.
- W4365816072 hasConceptScore W4365816072C50644808 @default.
- W4365816072 hasConceptScore W4365816072C66905080 @default.
- W4365816072 hasConceptScore W4365816072C70153297 @default.
- W4365816072 hasFunder F4320322587 @default.
- W4365816072 hasIssue "1" @default.
- W4365816072 hasLocation W43658160721 @default.
- W4365816072 hasLocation W43658160722 @default.
- W4365816072 hasLocation W43658160723 @default.
- W4365816072 hasOpenAccess W4365816072 @default.
- W4365816072 hasPrimaryLocation W43658160721 @default.
- W4365816072 hasRelatedWork W1996541855 @default.
- W4365816072 hasRelatedWork W3100297620 @default.