Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366083921> ?p ?o ?g. }
- W4366083921 endingPage "e41775" @default.
- W4366083921 startingPage "e41775" @default.
- W4366083921 abstract "Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who are at high risk of subsequent events after HF hospitalization.Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and worsening HF events (WHFEs).We used the Veradigm PINNACLE outpatient registry linked to Symphony Health's Integrated Dataverse data from July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included. WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression prediction models were applied and compared.A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency (AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre, especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive and negative cases and high missing rates of many clinical variables and outcome definitions.We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and have a longer follow-up time." @default.
- W4366083921 created "2023-04-19" @default.
- W4366083921 creator A5014838410 @default.
- W4366083921 creator A5018319660 @default.
- W4366083921 creator A5026277738 @default.
- W4366083921 creator A5040563784 @default.
- W4366083921 creator A5068551338 @default.
- W4366083921 creator A5070995297 @default.
- W4366083921 creator A5078618100 @default.
- W4366083921 creator A5088322790 @default.
- W4366083921 date "2023-04-17" @default.
- W4366083921 modified "2023-09-28" @default.
- W4366083921 title "Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study" @default.
- W4366083921 cites W1966716734 @default.
- W4366083921 cites W2018296348 @default.
- W4366083921 cites W2104933073 @default.
- W4366083921 cites W2113105800 @default.
- W4366083921 cites W2126617656 @default.
- W4366083921 cites W2498119267 @default.
- W4366083921 cites W2542719835 @default.
- W4366083921 cites W2557074642 @default.
- W4366083921 cites W2728065598 @default.
- W4366083921 cites W2763687967 @default.
- W4366083921 cites W2841694452 @default.
- W4366083921 cites W2891210725 @default.
- W4366083921 cites W2915269621 @default.
- W4366083921 cites W2915620466 @default.
- W4366083921 cites W2923546398 @default.
- W4366083921 cites W2954555617 @default.
- W4366083921 cites W2979826702 @default.
- W4366083921 cites W2980815940 @default.
- W4366083921 cites W2991379615 @default.
- W4366083921 cites W3017637887 @default.
- W4366083921 cites W3042698632 @default.
- W4366083921 cites W3047208451 @default.
- W4366083921 cites W3047295367 @default.
- W4366083921 cites W3062364896 @default.
- W4366083921 cites W3092170443 @default.
- W4366083921 cites W3092301826 @default.
- W4366083921 cites W3102476541 @default.
- W4366083921 cites W3106377951 @default.
- W4366083921 cites W3106758357 @default.
- W4366083921 cites W3113949091 @default.
- W4366083921 cites W3134599360 @default.
- W4366083921 cites W3152550041 @default.
- W4366083921 cites W3153550236 @default.
- W4366083921 cites W3160137267 @default.
- W4366083921 cites W3165206559 @default.
- W4366083921 cites W3188969319 @default.
- W4366083921 cites W3199768054 @default.
- W4366083921 cites W4210242902 @default.
- W4366083921 cites W4220676068 @default.
- W4366083921 cites W4254025109 @default.
- W4366083921 cites W4288058732 @default.
- W4366083921 cites W4307717106 @default.
- W4366083921 doi "https://doi.org/10.2196/41775" @default.
- W4366083921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37067873" @default.
- W4366083921 hasPublicationYear "2023" @default.
- W4366083921 type Work @default.
- W4366083921 citedByCount "2" @default.
- W4366083921 countsByYear W43660839212023 @default.
- W4366083921 crossrefType "journal-article" @default.
- W4366083921 hasAuthorship W4366083921A5014838410 @default.
- W4366083921 hasAuthorship W4366083921A5018319660 @default.
- W4366083921 hasAuthorship W4366083921A5026277738 @default.
- W4366083921 hasAuthorship W4366083921A5040563784 @default.
- W4366083921 hasAuthorship W4366083921A5068551338 @default.
- W4366083921 hasAuthorship W4366083921A5070995297 @default.
- W4366083921 hasAuthorship W4366083921A5078618100 @default.
- W4366083921 hasAuthorship W4366083921A5088322790 @default.
- W4366083921 hasBestOaLocation W43660839211 @default.
- W4366083921 hasConcept C11413529 @default.
- W4366083921 hasConcept C119857082 @default.
- W4366083921 hasConcept C126322002 @default.
- W4366083921 hasConcept C151956035 @default.
- W4366083921 hasConcept C154945302 @default.
- W4366083921 hasConcept C164705383 @default.
- W4366083921 hasConcept C169258074 @default.
- W4366083921 hasConcept C194828623 @default.
- W4366083921 hasConcept C2778198053 @default.
- W4366083921 hasConcept C2908647359 @default.
- W4366083921 hasConcept C41008148 @default.
- W4366083921 hasConcept C45827449 @default.
- W4366083921 hasConcept C50644808 @default.
- W4366083921 hasConcept C70153297 @default.
- W4366083921 hasConcept C71924100 @default.
- W4366083921 hasConcept C78085059 @default.
- W4366083921 hasConcept C99454951 @default.
- W4366083921 hasConceptScore W4366083921C11413529 @default.
- W4366083921 hasConceptScore W4366083921C119857082 @default.
- W4366083921 hasConceptScore W4366083921C126322002 @default.
- W4366083921 hasConceptScore W4366083921C151956035 @default.
- W4366083921 hasConceptScore W4366083921C154945302 @default.
- W4366083921 hasConceptScore W4366083921C164705383 @default.
- W4366083921 hasConceptScore W4366083921C169258074 @default.
- W4366083921 hasConceptScore W4366083921C194828623 @default.
- W4366083921 hasConceptScore W4366083921C2778198053 @default.
- W4366083921 hasConceptScore W4366083921C2908647359 @default.