Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366084166> ?p ?o ?g. }
- W4366084166 endingPage "2089" @default.
- W4366084166 startingPage "2079" @default.
- W4366084166 abstract "Steady-state visual evoked potential (SSVEP) signal collected from the scalp typically contains other types of electric signals, and it is important to remove these noise components from the actual signal by application of a pre-processing step for accurate analysis. High-pass or bandpass filtering of the SSVEP signal in the time domain is the most common pre-processing method. Because frequency is the most important feature information contained in the SSVEP signal, a technique for frequency-domain filtering of SSVEP was proposed here. In this method, the time-domain signal is extended to multi-dimensional signal by empirical mode decomposition (EMD), where each dimension represents a intrinsic mode function (IMF). The multi-dimensional signal is transformed to a frequency-domain signal by 2-D Fourier transform, the Gaussian high-pass filter function is constructed to perform high-pass filtering, and then the filtered signal is transformed to time domain by 2-D inverse Fourier transform. Finally, the filtered multi-dimensional intrinsic mode function is superimposed and averaged as the frequency-domain filtered signal. Compared with the time-domain filtering method, the experimental results revealed that frequency-domain filtering method effectively removed the baseline drift in signal and effectively suppressed the low-frequency interference component. This method was tested using data from public datasets and the results show that the proposed frequency-domain filtering method can significantly improve the feature recognition performance of canonical correlation analysis (CCA), filter bank canonical correlation analysis (FBCCA), and task-related component analysis (TRCA) methods. Thus, the results suggest that the application of frequency-domain filtering in the pre-processing stage allows improved noise removal. The proposed method extends SSVEP signal filtering from time-domain to frequency-domain, and the results suggest that this analysis tool significantly promotes the practical application of SSVEP systems." @default.
- W4366084166 created "2023-04-19" @default.
- W4366084166 creator A5003650283 @default.
- W4366084166 creator A5038557654 @default.
- W4366084166 creator A5065545409 @default.
- W4366084166 creator A5072031992 @default.
- W4366084166 creator A5085068318 @default.
- W4366084166 creator A5087568262 @default.
- W4366084166 date "2023-01-01" @default.
- W4366084166 modified "2023-10-14" @default.
- W4366084166 title "Frequency Domain Filtering Method for SSVEP-EEG Preprocessing" @default.
- W4366084166 cites W1653844963 @default.
- W4366084166 cites W2005618537 @default.
- W4366084166 cites W2049761669 @default.
- W4366084166 cites W2096597330 @default.
- W4366084166 cites W2098725211 @default.
- W4366084166 cites W2116871167 @default.
- W4366084166 cites W2117654730 @default.
- W4366084166 cites W2132876794 @default.
- W4366084166 cites W2143183535 @default.
- W4366084166 cites W2150590430 @default.
- W4366084166 cites W2163939660 @default.
- W4366084166 cites W2254425039 @default.
- W4366084166 cites W2507528282 @default.
- W4366084166 cites W2529453414 @default.
- W4366084166 cites W2540274724 @default.
- W4366084166 cites W2553904372 @default.
- W4366084166 cites W2557301950 @default.
- W4366084166 cites W2564709476 @default.
- W4366084166 cites W2590420622 @default.
- W4366084166 cites W2605492512 @default.
- W4366084166 cites W2764068583 @default.
- W4366084166 cites W2912949708 @default.
- W4366084166 cites W2940585064 @default.
- W4366084166 cites W2968403417 @default.
- W4366084166 cites W2996560686 @default.
- W4366084166 cites W3027321209 @default.
- W4366084166 cites W3080484934 @default.
- W4366084166 cites W3104131041 @default.
- W4366084166 cites W3129664521 @default.
- W4366084166 cites W3131591460 @default.
- W4366084166 cites W3194614924 @default.
- W4366084166 cites W4225112712 @default.
- W4366084166 cites W4226338899 @default.
- W4366084166 cites W4285801052 @default.
- W4366084166 cites W89777551 @default.
- W4366084166 doi "https://doi.org/10.1109/tnsre.2023.3266488" @default.
- W4366084166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37067974" @default.
- W4366084166 hasPublicationYear "2023" @default.
- W4366084166 type Work @default.
- W4366084166 citedByCount "0" @default.
- W4366084166 crossrefType "journal-article" @default.
- W4366084166 hasAuthorship W4366084166A5003650283 @default.
- W4366084166 hasAuthorship W4366084166A5038557654 @default.
- W4366084166 hasAuthorship W4366084166A5065545409 @default.
- W4366084166 hasAuthorship W4366084166A5072031992 @default.
- W4366084166 hasAuthorship W4366084166A5085068318 @default.
- W4366084166 hasAuthorship W4366084166A5087568262 @default.
- W4366084166 hasBestOaLocation W43660841661 @default.
- W4366084166 hasConcept C102519508 @default.
- W4366084166 hasConcept C103824480 @default.
- W4366084166 hasConcept C104267543 @default.
- W4366084166 hasConcept C106131492 @default.
- W4366084166 hasConcept C134306372 @default.
- W4366084166 hasConcept C138885662 @default.
- W4366084166 hasConcept C153180895 @default.
- W4366084166 hasConcept C154945302 @default.
- W4366084166 hasConcept C166386157 @default.
- W4366084166 hasConcept C19118579 @default.
- W4366084166 hasConcept C199360897 @default.
- W4366084166 hasConcept C203024314 @default.
- W4366084166 hasConcept C25570617 @default.
- W4366084166 hasConcept C2776401178 @default.
- W4366084166 hasConcept C2779843651 @default.
- W4366084166 hasConcept C28490314 @default.
- W4366084166 hasConcept C31972630 @default.
- W4366084166 hasConcept C33923547 @default.
- W4366084166 hasConcept C41008148 @default.
- W4366084166 hasConcept C41895202 @default.
- W4366084166 hasConcept C84462506 @default.
- W4366084166 hasConcept C9390403 @default.
- W4366084166 hasConceptScore W4366084166C102519508 @default.
- W4366084166 hasConceptScore W4366084166C103824480 @default.
- W4366084166 hasConceptScore W4366084166C104267543 @default.
- W4366084166 hasConceptScore W4366084166C106131492 @default.
- W4366084166 hasConceptScore W4366084166C134306372 @default.
- W4366084166 hasConceptScore W4366084166C138885662 @default.
- W4366084166 hasConceptScore W4366084166C153180895 @default.
- W4366084166 hasConceptScore W4366084166C154945302 @default.
- W4366084166 hasConceptScore W4366084166C166386157 @default.
- W4366084166 hasConceptScore W4366084166C19118579 @default.
- W4366084166 hasConceptScore W4366084166C199360897 @default.
- W4366084166 hasConceptScore W4366084166C203024314 @default.
- W4366084166 hasConceptScore W4366084166C25570617 @default.
- W4366084166 hasConceptScore W4366084166C2776401178 @default.
- W4366084166 hasConceptScore W4366084166C2779843651 @default.
- W4366084166 hasConceptScore W4366084166C28490314 @default.
- W4366084166 hasConceptScore W4366084166C31972630 @default.