Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366087273> ?p ?o ?g. }
- W4366087273 endingPage "981" @default.
- W4366087273 startingPage "981" @default.
- W4366087273 abstract "The application of quantum computation to accelerate machine learning algorithms is one of the most promising areas of research in quantum algorithms. In this paper, we explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition (QPR) problems, which are crucially important in understanding many-particle quantum systems. We prove that, under widely believed complexity theory assumptions, there exists a wide range of QPR problems that cannot be efficiently solved by classical learning algorithms with classical resources. Whereas using a quantum computer, we prove the efficiency and robustness of quantum kernel methods in solving QPR problems through Linear order parameter Observables. We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases. Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems." @default.
- W4366087273 created "2023-04-19" @default.
- W4366087273 creator A5001308300 @default.
- W4366087273 creator A5034053475 @default.
- W4366087273 creator A5086991187 @default.
- W4366087273 creator A5090412627 @default.
- W4366087273 date "2023-04-17" @default.
- W4366087273 modified "2023-10-05" @default.
- W4366087273 title "Quantum Phase Recognition via Quantum Kernel Methods" @default.
- W4366087273 cites W1576765155 @default.
- W4366087273 cites W2014603110 @default.
- W4366087273 cites W2016407890 @default.
- W4366087273 cites W2026444402 @default.
- W4366087273 cites W2037768897 @default.
- W4366087273 cites W2056117396 @default.
- W4366087273 cites W2060837851 @default.
- W4366087273 cites W2068688651 @default.
- W4366087273 cites W2072808339 @default.
- W4366087273 cites W2094888156 @default.
- W4366087273 cites W2103914106 @default.
- W4366087273 cites W2113166233 @default.
- W4366087273 cites W2118547397 @default.
- W4366087273 cites W2120248756 @default.
- W4366087273 cites W212428657 @default.
- W4366087273 cites W2149739919 @default.
- W4366087273 cites W2161685427 @default.
- W4366087273 cites W2337082154 @default.
- W4366087273 cites W2418689459 @default.
- W4366087273 cites W2419175238 @default.
- W4366087273 cites W2482126025 @default.
- W4366087273 cites W2526518998 @default.
- W4366087273 cites W2594041373 @default.
- W4366087273 cites W2606470147 @default.
- W4366087273 cites W2750458571 @default.
- W4366087273 cites W2755255888 @default.
- W4366087273 cites W2766447205 @default.
- W4366087273 cites W2792946961 @default.
- W4366087273 cites W2794444783 @default.
- W4366087273 cites W2896712926 @default.
- W4366087273 cites W2897579646 @default.
- W4366087273 cites W2919115771 @default.
- W4366087273 cites W2949170718 @default.
- W4366087273 cites W2972223037 @default.
- W4366087273 cites W2988374105 @default.
- W4366087273 cites W2995057155 @default.
- W4366087273 cites W3024243470 @default.
- W4366087273 cites W3030829226 @default.
- W4366087273 cites W3099994133 @default.
- W4366087273 cites W3100594946 @default.
- W4366087273 cites W3101214870 @default.
- W4366087273 cites W3101479050 @default.
- W4366087273 cites W3103574423 @default.
- W4366087273 cites W3103870741 @default.
- W4366087273 cites W3104481216 @default.
- W4366087273 cites W3110594610 @default.
- W4366087273 cites W3118800713 @default.
- W4366087273 cites W3118956135 @default.
- W4366087273 cites W3119636101 @default.
- W4366087273 cites W3129458892 @default.
- W4366087273 cites W3132743969 @default.
- W4366087273 cites W3136233239 @default.
- W4366087273 cites W3147993824 @default.
- W4366087273 cites W3148001159 @default.
- W4366087273 cites W3158182757 @default.
- W4366087273 cites W3166275705 @default.
- W4366087273 cites W3167925414 @default.
- W4366087273 cites W3172713805 @default.
- W4366087273 cites W3177828909 @default.
- W4366087273 cites W3182433019 @default.
- W4366087273 cites W3182680509 @default.
- W4366087273 cites W3198579014 @default.
- W4366087273 cites W3199816848 @default.
- W4366087273 cites W3206088030 @default.
- W4366087273 cites W3207479555 @default.
- W4366087273 cites W3209237089 @default.
- W4366087273 cites W3213257350 @default.
- W4366087273 cites W3216228299 @default.
- W4366087273 cites W4214552167 @default.
- W4366087273 cites W4220908680 @default.
- W4366087273 cites W4230561438 @default.
- W4366087273 cites W4283586296 @default.
- W4366087273 cites W4285059607 @default.
- W4366087273 cites W4287123924 @default.
- W4366087273 cites W4296794220 @default.
- W4366087273 cites W4300588179 @default.
- W4366087273 cites W4302010812 @default.
- W4366087273 cites W4385245566 @default.
- W4366087273 cites W569103170 @default.
- W4366087273 doi "https://doi.org/10.22331/q-2023-04-17-981" @default.
- W4366087273 hasPublicationYear "2023" @default.
- W4366087273 type Work @default.
- W4366087273 citedByCount "2" @default.
- W4366087273 countsByYear W43660872732023 @default.
- W4366087273 crossrefType "journal-article" @default.
- W4366087273 hasAuthorship W4366087273A5001308300 @default.
- W4366087273 hasAuthorship W4366087273A5034053475 @default.
- W4366087273 hasAuthorship W4366087273A5086991187 @default.
- W4366087273 hasAuthorship W4366087273A5090412627 @default.