Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366089691> ?p ?o ?g. }
- W4366089691 endingPage "188" @default.
- W4366089691 startingPage "188" @default.
- W4366089691 abstract "A new dynamical paradigm merging quantum dynamics with cosmology is discussed. We distinguish between a universe and its background space-time. The universe here is the subset of space-time defined by Ψτ(x)≠0, where Ψτ(x) is a solution of a Schrödinger equation, x is a point in n-dimensional Minkowski space, and τ≥0 is a dimensionless ‘cosmic-time’ evolution parameter. We derive the form of the Schrödinger equation and show that an empty universe is described by a Ψτ(x) that propagates towards the future inside some future-cone V+. The resulting dynamical semigroup is unitary, i.e., ∫V+d4x|Ψτ(x)|2=1 for τ≥0. The initial condition Ψ0(x) is not localized at x=0. Rather, it satisfies the boundary condition Ψ0(x)=0 for x∉V+. For n=1+3 the support of Ψτ(x) is bounded from the past by the ‘gap hyperboloid’ ℓ2τ=c2t2−x2, where ℓ is a fundamental length. Consequently, the points located between the hyperboloid and the light cone c2t2−x2=0 satisfy Ψτ(x)=0, and thus do not belong to the universe. As τ grows, the gap between the support of Ψτ(x) and the light cone increases. The past thus literally disappears. Unitarity of the dynamical semigroup implies that the universe becomes localized in a finite-thickness future-neighbourhood of ℓ2τ=c2t2−x2, simultaneously spreading along the hyperboloid. Effectively, for large τ the subset occupied by the universe resembles a part of the gap hyperboloid itself, but its thickness Δτ is non-zero for finite τ. Finite Δτ implies that the three-dimensional volume of the universe is finite as well. An approximate radius of the universe, rτ, grows with τ due to Δτrτ3=Δ0r03 and Δτ→0. The propagation of Ψτ(x) through space-time matches an intuitive picture of the passage of time. What we regard as the Minkowski-space classical time can be identified with ctτ=∫d4xx0|Ψτ(x)|2, so tτ grows with τ as a consequence of the Ehrenfest theorem, and its present uncertainty can be identified with the Planck time. Assuming that at present values of τ (corresponding to 13–14 billion years) Δτ and rτ are of the order of the Planck length and the Hubble radius, we estimate that the analogous thickness Δ0 of the support of Ψ0(x) is of the order of 1 AU, and r03∼(ctH)3×10−44. The estimates imply that the initial volume of the universe was finite and its uncertainty in time was several minutes. Next, we generalize the formalism in a way that incorporates interactions with matter. We are guided by the correspondence principle with quantum mechanics, which should be asymptotically reconstructed for the present values of τ. We argue that Hamiltonians corresponding to the present values of τ approximately describe quantum mechanics in a conformally Minkowskian space-time. The conformal factor is directly related to |Ψτ(x)|2. As a by-product of the construction, we arrive at a new formulation of conformal invariance of m≠0 fields." @default.
- W4366089691 created "2023-04-19" @default.
- W4366089691 creator A5047703180 @default.
- W4366089691 date "2023-04-16" @default.
- W4366089691 modified "2023-09-30" @default.
- W4366089691 title "Cosmic-Time Quantum Mechanics and the Passage-of-Time Problem" @default.
- W4366089691 cites W1026648513 @default.
- W4366089691 cites W1502244715 @default.
- W4366089691 cites W1789645782 @default.
- W4366089691 cites W1853767801 @default.
- W4366089691 cites W1966323671 @default.
- W4366089691 cites W1967042308 @default.
- W4366089691 cites W1971509559 @default.
- W4366089691 cites W1972130862 @default.
- W4366089691 cites W1974352214 @default.
- W4366089691 cites W1990216107 @default.
- W4366089691 cites W1991852827 @default.
- W4366089691 cites W1996153397 @default.
- W4366089691 cites W2018192739 @default.
- W4366089691 cites W2024637952 @default.
- W4366089691 cites W2034864060 @default.
- W4366089691 cites W2035362744 @default.
- W4366089691 cites W2042751715 @default.
- W4366089691 cites W2043481908 @default.
- W4366089691 cites W2045651569 @default.
- W4366089691 cites W2046802526 @default.
- W4366089691 cites W2059579393 @default.
- W4366089691 cites W2063783610 @default.
- W4366089691 cites W2072433414 @default.
- W4366089691 cites W2073832139 @default.
- W4366089691 cites W2076513105 @default.
- W4366089691 cites W2077470755 @default.
- W4366089691 cites W2077555437 @default.
- W4366089691 cites W2089984915 @default.
- W4366089691 cites W2115628191 @default.
- W4366089691 cites W2115766219 @default.
- W4366089691 cites W2121590440 @default.
- W4366089691 cites W2405995981 @default.
- W4366089691 cites W2499128695 @default.
- W4366089691 cites W2809140821 @default.
- W4366089691 cites W2897941593 @default.
- W4366089691 cites W2963754816 @default.
- W4366089691 cites W2987420910 @default.
- W4366089691 cites W3037620826 @default.
- W4366089691 cites W3091861796 @default.
- W4366089691 cites W3093408558 @default.
- W4366089691 cites W3098112820 @default.
- W4366089691 cites W3098773326 @default.
- W4366089691 cites W3099649578 @default.
- W4366089691 cites W3100891214 @default.
- W4366089691 cites W3103518037 @default.
- W4366089691 cites W3103728560 @default.
- W4366089691 cites W3104476398 @default.
- W4366089691 cites W3104897367 @default.
- W4366089691 cites W3105657061 @default.
- W4366089691 cites W3116766879 @default.
- W4366089691 cites W3184993961 @default.
- W4366089691 cites W4244221855 @default.
- W4366089691 doi "https://doi.org/10.3390/universe9040188" @default.
- W4366089691 hasPublicationYear "2023" @default.
- W4366089691 type Work @default.
- W4366089691 citedByCount "0" @default.
- W4366089691 crossrefType "journal-article" @default.
- W4366089691 hasAuthorship W4366089691A5047703180 @default.
- W4366089691 hasBestOaLocation W43660896911 @default.
- W4366089691 hasConcept C120665830 @default.
- W4366089691 hasConcept C121332964 @default.
- W4366089691 hasConcept C172790937 @default.
- W4366089691 hasConcept C197067312 @default.
- W4366089691 hasConcept C20154449 @default.
- W4366089691 hasConcept C26405456 @default.
- W4366089691 hasConcept C33332235 @default.
- W4366089691 hasConcept C37914503 @default.
- W4366089691 hasConcept C62520636 @default.
- W4366089691 hasConcept C74650414 @default.
- W4366089691 hasConcept C79464548 @default.
- W4366089691 hasConcept C84999194 @default.
- W4366089691 hasConcept C99564226 @default.
- W4366089691 hasConceptScore W4366089691C120665830 @default.
- W4366089691 hasConceptScore W4366089691C121332964 @default.
- W4366089691 hasConceptScore W4366089691C172790937 @default.
- W4366089691 hasConceptScore W4366089691C197067312 @default.
- W4366089691 hasConceptScore W4366089691C20154449 @default.
- W4366089691 hasConceptScore W4366089691C26405456 @default.
- W4366089691 hasConceptScore W4366089691C33332235 @default.
- W4366089691 hasConceptScore W4366089691C37914503 @default.
- W4366089691 hasConceptScore W4366089691C62520636 @default.
- W4366089691 hasConceptScore W4366089691C74650414 @default.
- W4366089691 hasConceptScore W4366089691C79464548 @default.
- W4366089691 hasConceptScore W4366089691C84999194 @default.
- W4366089691 hasConceptScore W4366089691C99564226 @default.
- W4366089691 hasIssue "4" @default.
- W4366089691 hasLocation W43660896911 @default.
- W4366089691 hasLocation W43660896912 @default.
- W4366089691 hasLocation W43660896913 @default.
- W4366089691 hasLocation W43660896914 @default.
- W4366089691 hasOpenAccess W4366089691 @default.
- W4366089691 hasPrimaryLocation W43660896911 @default.