Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366122008> ?p ?o ?g. }
- W4366122008 endingPage "1556" @default.
- W4366122008 startingPage "1556" @default.
- W4366122008 abstract "Obtaining more accurate flood information downstream of a reservoir is crucial for guiding reservoir regulation and reducing the occurrence of flood disasters. In this paper, six popular ML models, including the support vector regression (SVR), Gaussian process regression (GPR), random forest regression (RFR), multilayer perceptron (MLP), long short-term memory (LSTM) and gated recurrent unit (GRU) models, were selected and compared for their effectiveness in flood routing of two complicated reaches located at the upper and middle main stream of the Yangtze River. The results suggested that the performance of the MLP, LSTM and GRU models all gradually improved and then slightly decreased as the time lag increased. Furthermore, the MLP, LSTM and GRU models outperformed the SVR, GPR and RFR models, and the GRU model demonstrated superior performance across a range of efficiency criteria, including mean absolute percentage error (MAPE), root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), Taylor skill score (TSS) and Kling–Gupta efficiency (KGE). Specifically, the GRU model achieved reductions in MAPE and RMSE of at least 7.66% and 3.80% in the first case study and reductions of 19.51% and 11.76% in the second case study. The paper indicated that the GRU model was the most appropriate choice for flood routing in the Yangtze River." @default.
- W4366122008 created "2023-04-19" @default.
- W4366122008 creator A5009933898 @default.
- W4366122008 creator A5088152181 @default.
- W4366122008 date "2023-04-15" @default.
- W4366122008 modified "2023-10-16" @default.
- W4366122008 title "A Comparative Analysis of Multiple Machine Learning Methods for Flood Routing in the Yangtze River" @default.
- W4366122008 cites W1967530883 @default.
- W4366122008 cites W1985479415 @default.
- W4366122008 cites W2037837316 @default.
- W4366122008 cites W2072459038 @default.
- W4366122008 cites W2079259321 @default.
- W4366122008 cites W2164435522 @default.
- W4366122008 cites W2339400037 @default.
- W4366122008 cites W2341612709 @default.
- W4366122008 cites W2695852654 @default.
- W4366122008 cites W2799422346 @default.
- W4366122008 cites W2804523998 @default.
- W4366122008 cites W2807186313 @default.
- W4366122008 cites W2895828325 @default.
- W4366122008 cites W2905485021 @default.
- W4366122008 cites W2908412011 @default.
- W4366122008 cites W2910993421 @default.
- W4366122008 cites W2919694267 @default.
- W4366122008 cites W2928310520 @default.
- W4366122008 cites W2964253828 @default.
- W4366122008 cites W2994787325 @default.
- W4366122008 cites W3008362003 @default.
- W4366122008 cites W3010293358 @default.
- W4366122008 cites W3025079747 @default.
- W4366122008 cites W3028368812 @default.
- W4366122008 cites W3042123167 @default.
- W4366122008 cites W3095642030 @default.
- W4366122008 cites W3103865021 @default.
- W4366122008 cites W3109518285 @default.
- W4366122008 cites W3113214534 @default.
- W4366122008 cites W3132933438 @default.
- W4366122008 cites W3137665750 @default.
- W4366122008 cites W3138804159 @default.
- W4366122008 cites W3151387141 @default.
- W4366122008 cites W3161127126 @default.
- W4366122008 cites W3167299628 @default.
- W4366122008 cites W3168130740 @default.
- W4366122008 cites W3175843889 @default.
- W4366122008 cites W3186262789 @default.
- W4366122008 cites W3197065975 @default.
- W4366122008 cites W3199350497 @default.
- W4366122008 cites W3210744571 @default.
- W4366122008 cites W3216230678 @default.
- W4366122008 cites W3216505733 @default.
- W4366122008 cites W4205588137 @default.
- W4366122008 cites W4205801348 @default.
- W4366122008 cites W4206302980 @default.
- W4366122008 cites W4206572797 @default.
- W4366122008 cites W4206621903 @default.
- W4366122008 cites W4206798950 @default.
- W4366122008 cites W4210276887 @default.
- W4366122008 cites W4210409013 @default.
- W4366122008 cites W4210566398 @default.
- W4366122008 cites W4212789837 @default.
- W4366122008 cites W4213272346 @default.
- W4366122008 cites W4220865511 @default.
- W4366122008 cites W4221100950 @default.
- W4366122008 cites W4224092589 @default.
- W4366122008 cites W4224294757 @default.
- W4366122008 cites W4224327231 @default.
- W4366122008 cites W4225900903 @default.
- W4366122008 cites W4281700753 @default.
- W4366122008 cites W4281714196 @default.
- W4366122008 cites W4283164766 @default.
- W4366122008 cites W4283382693 @default.
- W4366122008 cites W4285595089 @default.
- W4366122008 cites W4289667495 @default.
- W4366122008 cites W4293181957 @default.
- W4366122008 cites W4312008291 @default.
- W4366122008 cites W4317746428 @default.
- W4366122008 cites W3112433191 @default.
- W4366122008 doi "https://doi.org/10.3390/w15081556" @default.
- W4366122008 hasPublicationYear "2023" @default.
- W4366122008 type Work @default.
- W4366122008 citedByCount "0" @default.
- W4366122008 crossrefType "journal-article" @default.
- W4366122008 hasAuthorship W4366122008A5009933898 @default.
- W4366122008 hasAuthorship W4366122008A5088152181 @default.
- W4366122008 hasBestOaLocation W43661220081 @default.
- W4366122008 hasConcept C105795698 @default.
- W4366122008 hasConcept C12267149 @default.
- W4366122008 hasConcept C139945424 @default.
- W4366122008 hasConcept C150217764 @default.
- W4366122008 hasConcept C154945302 @default.
- W4366122008 hasConcept C166957645 @default.
- W4366122008 hasConcept C169258074 @default.
- W4366122008 hasConcept C179717631 @default.
- W4366122008 hasConcept C205649164 @default.
- W4366122008 hasConcept C33923547 @default.
- W4366122008 hasConcept C41008148 @default.
- W4366122008 hasConcept C50644808 @default.
- W4366122008 hasConcept C74256435 @default.