Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366123735> ?p ?o ?g. }
- W4366123735 abstract "Abstract According to the world health organization report, brain cancer has the highest death rate. magnetic resonance imaging (MRI) for detecting brain tumours is adopted these days due to several advantages over other detection techniques. This paper presents a novel methodology to classify MR images based on texture and deep features, z ‐score normalization, and, Comprehensive learning elephant herding optimization (CLEHO) based feature optimization and classification. Deep features of brain MR images have been extracted through DenseNet121 convolutional neural network and texture features have been extracted by using the Gabor 2D filter, Haralick texture feature, edge continuity texture feature, first order statistical texture feature, local binary pattern feature, difference theoretic texture feature, and spectral texture feature techniques. Normalization has been done using three normalization techniques that is, z score, mean median absolute deviation (MMAD), and Tanh‐based after aggregating the features extracted from the previous step. z ‐score normalization has been suggested for feature normalization after comparing the results attained from the three techniques. Lastly, binary CLEHO has been proposed for selecting an optimal feature set and also optimizing the ‘ k ’ value of the k ‐NN classifier. The outcome of this proposed work is compared with other state‐of‐the‐art methods for a publicly available magnetic resonance image Fighshare dataset of 3064 slices from 233 patients. The proposed work has a brain tumour average classification accuracy of 98.97%, which is better than the other state‐of‐the‐art methods. The proposed work can be used to assist the radiologist in the screening of multi‐class brain tumours." @default.
- W4366123735 created "2023-04-19" @default.
- W4366123735 creator A5033892624 @default.
- W4366123735 creator A5034336789 @default.
- W4366123735 date "2023-04-16" @default.
- W4366123735 modified "2023-10-17" @default.
- W4366123735 title "Classification of brain tumour based on texture and deep features of magnetic resonance images" @default.
- W4366123735 cites W1509760724 @default.
- W4366123735 cites W1977738564 @default.
- W4366123735 cites W1980483305 @default.
- W4366123735 cites W1995806857 @default.
- W4366123735 cites W2013381316 @default.
- W4366123735 cites W2024768356 @default.
- W4366123735 cites W2044465660 @default.
- W4366123735 cites W2060070251 @default.
- W4366123735 cites W2061272711 @default.
- W4366123735 cites W2074334715 @default.
- W4366123735 cites W2074739260 @default.
- W4366123735 cites W2094221606 @default.
- W4366123735 cites W2097117768 @default.
- W4366123735 cites W2102372511 @default.
- W4366123735 cites W2107496735 @default.
- W4366123735 cites W2108028245 @default.
- W4366123735 cites W2113286112 @default.
- W4366123735 cites W2121592831 @default.
- W4366123735 cites W2125213524 @default.
- W4366123735 cites W2129490796 @default.
- W4366123735 cites W2154823510 @default.
- W4366123735 cites W2160279214 @default.
- W4366123735 cites W2173608465 @default.
- W4366123735 cites W2182098131 @default.
- W4366123735 cites W2183341477 @default.
- W4366123735 cites W2194775991 @default.
- W4366123735 cites W2255932442 @default.
- W4366123735 cites W2461302873 @default.
- W4366123735 cites W2532474215 @default.
- W4366123735 cites W2541451878 @default.
- W4366123735 cites W2574362619 @default.
- W4366123735 cites W2584466409 @default.
- W4366123735 cites W2618530766 @default.
- W4366123735 cites W2626803231 @default.
- W4366123735 cites W2767768852 @default.
- W4366123735 cites W2780099243 @default.
- W4366123735 cites W2781900836 @default.
- W4366123735 cites W2801008122 @default.
- W4366123735 cites W2889685514 @default.
- W4366123735 cites W2897188827 @default.
- W4366123735 cites W2904208441 @default.
- W4366123735 cites W2905017682 @default.
- W4366123735 cites W2921483513 @default.
- W4366123735 cites W2922490081 @default.
- W4366123735 cites W2941719259 @default.
- W4366123735 cites W2943374613 @default.
- W4366123735 cites W2945020349 @default.
- W4366123735 cites W2945839551 @default.
- W4366123735 cites W2947735999 @default.
- W4366123735 cites W2955303309 @default.
- W4366123735 cites W2955805844 @default.
- W4366123735 cites W2964350391 @default.
- W4366123735 cites W2994753452 @default.
- W4366123735 cites W2998358103 @default.
- W4366123735 cites W3011430986 @default.
- W4366123735 cites W3013952416 @default.
- W4366123735 cites W3014711893 @default.
- W4366123735 cites W3026512653 @default.
- W4366123735 cites W3031839920 @default.
- W4366123735 cites W3034112021 @default.
- W4366123735 cites W3047312786 @default.
- W4366123735 cites W3047346450 @default.
- W4366123735 cites W3047434002 @default.
- W4366123735 cites W3084741591 @default.
- W4366123735 cites W3127167602 @default.
- W4366123735 cites W3136979370 @default.
- W4366123735 cites W3159670968 @default.
- W4366123735 cites W3166938345 @default.
- W4366123735 cites W3186246527 @default.
- W4366123735 cites W4205420080 @default.
- W4366123735 cites W4210306310 @default.
- W4366123735 cites W4211132876 @default.
- W4366123735 cites W4220700457 @default.
- W4366123735 cites W4250689175 @default.
- W4366123735 cites W4285161415 @default.
- W4366123735 cites W4292764255 @default.
- W4366123735 cites W4295517687 @default.
- W4366123735 doi "https://doi.org/10.1111/exsy.13294" @default.
- W4366123735 hasPublicationYear "2023" @default.
- W4366123735 type Work @default.
- W4366123735 citedByCount "0" @default.
- W4366123735 crossrefType "journal-article" @default.
- W4366123735 hasAuthorship W4366123735A5033892624 @default.
- W4366123735 hasAuthorship W4366123735A5034336789 @default.
- W4366123735 hasConcept C115961682 @default.
- W4366123735 hasConcept C126838900 @default.
- W4366123735 hasConcept C136886441 @default.
- W4366123735 hasConcept C138885662 @default.
- W4366123735 hasConcept C143409427 @default.
- W4366123735 hasConcept C144024400 @default.
- W4366123735 hasConcept C153180895 @default.
- W4366123735 hasConcept C154945302 @default.
- W4366123735 hasConcept C19165224 @default.