Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366127920> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4366127920 endingPage "342" @default.
- W4366127920 startingPage "329" @default.
- W4366127920 abstract "Soil moisture is one of the basic climate variables of the global climate observation system, and the prediction of soil moisture is of great significance for agricultural yield assessment, flood and drought prediction, and soil and water conservation. Aiming at the complexity of soil moisture influencing factors and their time-varying time series characteristics, we propose a Transformer model that introduces LSTM, which uses the sequential modeling capability of LSTM to extract contextual information for each data, and plays the role of position coding in the LSTM-Transformer model, and the multi-head attention mechanism in the model can highlight important features by weighting, so as to effectively process time series data. Taking soil moisture, soil evaporation, vegetation index, runoff and climate data at different depths of Xilin Gol grassland in Inner Mongolia from 2012 to 2022 as input variables, soil moisture at different depths from 2022 to 2023 was predicted, and the model prediction performance was compared with the traditional long short-term memory neural network (LSTM) and bidirectional long short-term memory neural network (BiLSTM) through the three statistical indicators of MAE, MAPE and RMSE. The LSTM-Transformer model has better performance for prediction of soil moisture at different depths. The prediction of soil moisture has great guiding significance for timely grasping grassland soil moisture and adopting proactive agricultural production." @default.
- W4366127920 created "2023-04-19" @default.
- W4366127920 creator A5040311207 @default.
- W4366127920 creator A5069843494 @default.
- W4366127920 creator A5072518078 @default.
- W4366127920 creator A5082615574 @default.
- W4366127920 date "2023-01-01" @default.
- W4366127920 modified "2023-09-30" @default.
- W4366127920 title "Research on Soil Moisture Prediction Based on LSTM-Transformer Model" @default.
- W4366127920 cites W2091645633 @default.
- W4366127920 cites W2130989950 @default.
- W4366127920 cites W2473489869 @default.
- W4366127920 cites W2927513003 @default.
- W4366127920 cites W2958809599 @default.
- W4366127920 cites W2970413753 @default.
- W4366127920 cites W3005875885 @default.
- W4366127920 cites W3126193945 @default.
- W4366127920 cites W3147761935 @default.
- W4366127920 cites W3216050229 @default.
- W4366127920 cites W4200149104 @default.
- W4366127920 cites W4220992816 @default.
- W4366127920 cites W4223559467 @default.
- W4366127920 cites W4283657183 @default.
- W4366127920 doi "https://doi.org/10.1007/978-981-99-1549-1_26" @default.
- W4366127920 hasPublicationYear "2023" @default.
- W4366127920 type Work @default.
- W4366127920 citedByCount "0" @default.
- W4366127920 crossrefType "book-chapter" @default.
- W4366127920 hasAuthorship W4366127920A5040311207 @default.
- W4366127920 hasAuthorship W4366127920A5069843494 @default.
- W4366127920 hasAuthorship W4366127920A5072518078 @default.
- W4366127920 hasAuthorship W4366127920A5082615574 @default.
- W4366127920 hasConcept C119857082 @default.
- W4366127920 hasConcept C127413603 @default.
- W4366127920 hasConcept C133488467 @default.
- W4366127920 hasConcept C147168706 @default.
- W4366127920 hasConcept C159390177 @default.
- W4366127920 hasConcept C187320778 @default.
- W4366127920 hasConcept C24939127 @default.
- W4366127920 hasConcept C2775835988 @default.
- W4366127920 hasConcept C39432304 @default.
- W4366127920 hasConcept C41008148 @default.
- W4366127920 hasConcept C50644808 @default.
- W4366127920 hasConcept C6557445 @default.
- W4366127920 hasConcept C76886044 @default.
- W4366127920 hasConcept C86803240 @default.
- W4366127920 hasConcept C88463610 @default.
- W4366127920 hasConceptScore W4366127920C119857082 @default.
- W4366127920 hasConceptScore W4366127920C127413603 @default.
- W4366127920 hasConceptScore W4366127920C133488467 @default.
- W4366127920 hasConceptScore W4366127920C147168706 @default.
- W4366127920 hasConceptScore W4366127920C159390177 @default.
- W4366127920 hasConceptScore W4366127920C187320778 @default.
- W4366127920 hasConceptScore W4366127920C24939127 @default.
- W4366127920 hasConceptScore W4366127920C2775835988 @default.
- W4366127920 hasConceptScore W4366127920C39432304 @default.
- W4366127920 hasConceptScore W4366127920C41008148 @default.
- W4366127920 hasConceptScore W4366127920C50644808 @default.
- W4366127920 hasConceptScore W4366127920C6557445 @default.
- W4366127920 hasConceptScore W4366127920C76886044 @default.
- W4366127920 hasConceptScore W4366127920C86803240 @default.
- W4366127920 hasConceptScore W4366127920C88463610 @default.
- W4366127920 hasLocation W43661279201 @default.
- W4366127920 hasOpenAccess W4366127920 @default.
- W4366127920 hasPrimaryLocation W43661279201 @default.
- W4366127920 hasRelatedWork W1990784567 @default.
- W4366127920 hasRelatedWork W2037816893 @default.
- W4366127920 hasRelatedWork W2068387211 @default.
- W4366127920 hasRelatedWork W2107686664 @default.
- W4366127920 hasRelatedWork W2351591525 @default.
- W4366127920 hasRelatedWork W2358901241 @default.
- W4366127920 hasRelatedWork W2367306319 @default.
- W4366127920 hasRelatedWork W2374344532 @default.
- W4366127920 hasRelatedWork W2974635562 @default.
- W4366127920 hasRelatedWork W3095821188 @default.
- W4366127920 isParatext "false" @default.
- W4366127920 isRetracted "false" @default.
- W4366127920 workType "book-chapter" @default.