Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366128539> ?p ?o ?g. }
- W4366128539 endingPage "262" @default.
- W4366128539 startingPage "248" @default.
- W4366128539 abstract "Data compression and dimensionality reduction play an essential role in machine learning. In recent years, due to the relatively high dimensionality of data, dimensionality reduction based on vectors cannot be well processed and will destroy the structure of high-dimensional data. Therefore, research on dimensionality reduction based on tensors is increasing daily. This paper mainly studies the extended multi-linear principal component analysis (MPCA) of principal component analysis (PCA) in the tensor space. This paper proposes a MPCA dimension reduction algorithm based on the weight matrix, followed by the construction of a multi-objective model. An IP-NSGA-III is proposed to solve the weight matrix. Experimental results of hyperspectral image classification show that, compared with different algorithms, the MPCA algorithm based on the weight matrix proposed in this paper has a better dimension-reduction effect." @default.
- W4366128539 created "2023-04-19" @default.
- W4366128539 creator A5018032174 @default.
- W4366128539 creator A5046225712 @default.
- W4366128539 creator A5047225155 @default.
- W4366128539 creator A5056237508 @default.
- W4366128539 date "2023-01-01" @default.
- W4366128539 modified "2023-10-16" @default.
- W4366128539 title "An Improved MPCA Algorithm with Weight Matrix Based on Many-Objective Optimization" @default.
- W4366128539 cites W1970286667 @default.
- W4366128539 cites W1989267105 @default.
- W4366128539 cites W1997038974 @default.
- W4366128539 cites W2022485595 @default.
- W4366128539 cites W2032510388 @default.
- W4366128539 cites W2035470992 @default.
- W4366128539 cites W2063764781 @default.
- W4366128539 cites W2072509929 @default.
- W4366128539 cites W2077132982 @default.
- W4366128539 cites W2090341258 @default.
- W4366128539 cites W2102544846 @default.
- W4366128539 cites W2141200867 @default.
- W4366128539 cites W2144760303 @default.
- W4366128539 cites W2162698522 @default.
- W4366128539 cites W2571057189 @default.
- W4366128539 cites W2700273814 @default.
- W4366128539 cites W2732868105 @default.
- W4366128539 cites W2754049014 @default.
- W4366128539 cites W2781828096 @default.
- W4366128539 cites W2800464830 @default.
- W4366128539 cites W2809137896 @default.
- W4366128539 cites W2901850888 @default.
- W4366128539 cites W2914542742 @default.
- W4366128539 cites W2923563913 @default.
- W4366128539 cites W2942389422 @default.
- W4366128539 cites W2947240313 @default.
- W4366128539 cites W2962214891 @default.
- W4366128539 cites W2968349036 @default.
- W4366128539 cites W2979547970 @default.
- W4366128539 cites W3078753841 @default.
- W4366128539 cites W3160523871 @default.
- W4366128539 cites W4232158579 @default.
- W4366128539 cites W4254514600 @default.
- W4366128539 doi "https://doi.org/10.1007/978-981-99-1549-1_20" @default.
- W4366128539 hasPublicationYear "2023" @default.
- W4366128539 type Work @default.
- W4366128539 citedByCount "0" @default.
- W4366128539 crossrefType "book-chapter" @default.
- W4366128539 hasAuthorship W4366128539A5018032174 @default.
- W4366128539 hasAuthorship W4366128539A5046225712 @default.
- W4366128539 hasAuthorship W4366128539A5047225155 @default.
- W4366128539 hasAuthorship W4366128539A5056237508 @default.
- W4366128539 hasConcept C106487976 @default.
- W4366128539 hasConcept C111030470 @default.
- W4366128539 hasConcept C111335779 @default.
- W4366128539 hasConcept C11413529 @default.
- W4366128539 hasConcept C114614502 @default.
- W4366128539 hasConcept C153180895 @default.
- W4366128539 hasConcept C154945302 @default.
- W4366128539 hasConcept C155281189 @default.
- W4366128539 hasConcept C159078339 @default.
- W4366128539 hasConcept C185592680 @default.
- W4366128539 hasConcept C202444582 @default.
- W4366128539 hasConcept C24252448 @default.
- W4366128539 hasConcept C2524010 @default.
- W4366128539 hasConcept C27438332 @default.
- W4366128539 hasConcept C33676613 @default.
- W4366128539 hasConcept C33923547 @default.
- W4366128539 hasConcept C41008148 @default.
- W4366128539 hasConcept C43617362 @default.
- W4366128539 hasConcept C70518039 @default.
- W4366128539 hasConceptScore W4366128539C106487976 @default.
- W4366128539 hasConceptScore W4366128539C111030470 @default.
- W4366128539 hasConceptScore W4366128539C111335779 @default.
- W4366128539 hasConceptScore W4366128539C11413529 @default.
- W4366128539 hasConceptScore W4366128539C114614502 @default.
- W4366128539 hasConceptScore W4366128539C153180895 @default.
- W4366128539 hasConceptScore W4366128539C154945302 @default.
- W4366128539 hasConceptScore W4366128539C155281189 @default.
- W4366128539 hasConceptScore W4366128539C159078339 @default.
- W4366128539 hasConceptScore W4366128539C185592680 @default.
- W4366128539 hasConceptScore W4366128539C202444582 @default.
- W4366128539 hasConceptScore W4366128539C24252448 @default.
- W4366128539 hasConceptScore W4366128539C2524010 @default.
- W4366128539 hasConceptScore W4366128539C27438332 @default.
- W4366128539 hasConceptScore W4366128539C33676613 @default.
- W4366128539 hasConceptScore W4366128539C33923547 @default.
- W4366128539 hasConceptScore W4366128539C41008148 @default.
- W4366128539 hasConceptScore W4366128539C43617362 @default.
- W4366128539 hasConceptScore W4366128539C70518039 @default.
- W4366128539 hasLocation W43661285391 @default.
- W4366128539 hasOpenAccess W4366128539 @default.
- W4366128539 hasPrimaryLocation W43661285391 @default.
- W4366128539 hasRelatedWork W2010514871 @default.
- W4366128539 hasRelatedWork W2068674983 @default.
- W4366128539 hasRelatedWork W2094600769 @default.
- W4366128539 hasRelatedWork W2140027948 @default.
- W4366128539 hasRelatedWork W2504126691 @default.
- W4366128539 hasRelatedWork W3018841469 @default.