Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366139706> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4366139706 abstract "In order to ensure uninterrupted operation over time-in-service, progressive assessment of damage accrual and remaining useful life is needed to allow for early identification of impending failure. This paper proposes Prognostics Health Management methods for feature vector-based assessment of damage initiation and progression in electronic systems. The methods can be used to detect impending failures in mission-critical electronics while they are in operation or to assess mission readiness before deployment. Previous research in the field has focused on using fuses and canaries to detect impending failure. Prior implementation of data-driven methods frequently disregards failure mechanics. A method for assessing evolving damage in complex systems with nonlinear material behavior has been presented. For various mechanical shock and vibration levels, feature vectors have been identified for predicting remaining useful life. Damage progression was investigated in test vehicles made from various solder interconnects, including SAC105 and SAC305, with the same assembly geometry and architecture. The changes in feature vectors caused by differences in solder material were also investigated. In order to create meaningful data vectors for correlation with the underlying damage progression in pristine and aged assemblies, feature-vector engineering has been pursued. The feature vector selected from the strain signal’s time and frequency domain analysis is modeled using the Long Short-term Memory (LSTM) deep learning technique to predict the packages’ remaining useful files during the drop. Validation cases for the feature vectors identified in the study have been presented by correlating the plastic work predicted by finite element simulation with that predicted by LSTM. Furthermore, the prediction of remaining useful life has been correlated with experimentally measured time to failure." @default.
- W4366139706 created "2023-04-19" @default.
- W4366139706 creator A5058515833 @default.
- W4366139706 creator A5068741078 @default.
- W4366139706 date "2023-04-17" @default.
- W4366139706 modified "2023-09-25" @default.
- W4366139706 title "AI and Feature-Vector Based Damage Monitoring and Remaining Useful-Life Assessment for Electronics Assemblies in Mechanical Shock and Vibration" @default.
- W4366139706 cites W2010487804 @default.
- W4366139706 cites W2086800841 @default.
- W4366139706 cites W2120386739 @default.
- W4366139706 cites W2169534075 @default.
- W4366139706 cites W2483512952 @default.
- W4366139706 cites W2766595497 @default.
- W4366139706 cites W2785665236 @default.
- W4366139706 cites W2792313681 @default.
- W4366139706 cites W2885767516 @default.
- W4366139706 cites W2891715299 @default.
- W4366139706 cites W2901173412 @default.
- W4366139706 cites W2996227364 @default.
- W4366139706 cites W3081760289 @default.
- W4366139706 cites W3189293879 @default.
- W4366139706 cites W3190014363 @default.
- W4366139706 cites W3217768176 @default.
- W4366139706 doi "https://doi.org/10.1109/eurosime56861.2023.10100747" @default.
- W4366139706 hasPublicationYear "2023" @default.
- W4366139706 type Work @default.
- W4366139706 citedByCount "0" @default.
- W4366139706 crossrefType "proceedings-article" @default.
- W4366139706 hasAuthorship W4366139706A5058515833 @default.
- W4366139706 hasAuthorship W4366139706A5068741078 @default.
- W4366139706 hasConcept C119599485 @default.
- W4366139706 hasConcept C121332964 @default.
- W4366139706 hasConcept C124101348 @default.
- W4366139706 hasConcept C127413603 @default.
- W4366139706 hasConcept C129364497 @default.
- W4366139706 hasConcept C138331895 @default.
- W4366139706 hasConcept C138885662 @default.
- W4366139706 hasConcept C153180895 @default.
- W4366139706 hasConcept C154945302 @default.
- W4366139706 hasConcept C198394728 @default.
- W4366139706 hasConcept C200601418 @default.
- W4366139706 hasConcept C24890656 @default.
- W4366139706 hasConcept C2776401178 @default.
- W4366139706 hasConcept C41008148 @default.
- W4366139706 hasConcept C41895202 @default.
- W4366139706 hasConcept C83665646 @default.
- W4366139706 hasConceptScore W4366139706C119599485 @default.
- W4366139706 hasConceptScore W4366139706C121332964 @default.
- W4366139706 hasConceptScore W4366139706C124101348 @default.
- W4366139706 hasConceptScore W4366139706C127413603 @default.
- W4366139706 hasConceptScore W4366139706C129364497 @default.
- W4366139706 hasConceptScore W4366139706C138331895 @default.
- W4366139706 hasConceptScore W4366139706C138885662 @default.
- W4366139706 hasConceptScore W4366139706C153180895 @default.
- W4366139706 hasConceptScore W4366139706C154945302 @default.
- W4366139706 hasConceptScore W4366139706C198394728 @default.
- W4366139706 hasConceptScore W4366139706C200601418 @default.
- W4366139706 hasConceptScore W4366139706C24890656 @default.
- W4366139706 hasConceptScore W4366139706C2776401178 @default.
- W4366139706 hasConceptScore W4366139706C41008148 @default.
- W4366139706 hasConceptScore W4366139706C41895202 @default.
- W4366139706 hasConceptScore W4366139706C83665646 @default.
- W4366139706 hasFunder F4320309904 @default.
- W4366139706 hasLocation W43661397061 @default.
- W4366139706 hasOpenAccess W4366139706 @default.
- W4366139706 hasPrimaryLocation W43661397061 @default.
- W4366139706 hasRelatedWork W2052253960 @default.
- W4366139706 hasRelatedWork W2086816605 @default.
- W4366139706 hasRelatedWork W2127436184 @default.
- W4366139706 hasRelatedWork W2147802381 @default.
- W4366139706 hasRelatedWork W2150917855 @default.
- W4366139706 hasRelatedWork W2156441773 @default.
- W4366139706 hasRelatedWork W2509918103 @default.
- W4366139706 hasRelatedWork W2785535669 @default.
- W4366139706 hasRelatedWork W3197541072 @default.
- W4366139706 hasRelatedWork W2480412556 @default.
- W4366139706 isParatext "false" @default.
- W4366139706 isRetracted "false" @default.
- W4366139706 workType "article" @default.