Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366144494> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4366144494 abstract "Artificial intelligence (AI) in the form of machine learning enables the working framework to get more accurate at interpreting outcomes without being explicitly programmed. Machine learning is described as a collection of techniques and algorithms that are capable of extracting information from data and continually enhancing their capabilities through the process of learning from experience. In Machine learning, Artificial Neural Networks (ANN), Multiple linear regression, support vector machine, and linear regression are widely available. An outline of the benefits of machine learning (ML) in the domain of Civil Engineering is described in this article. The review focused more on the determination of the strength characteristics of concrete through machine learning. Rapid growth in the sophistication of these approaches has had a profound impact on Civil Engineering, particularly in the building and infrastructure industries. In the field of Civil Engineering, Machine Learning plays a significant role in forecasting strength, particularly compressive strength and the physical features of concrete, such as assessment of crack propagation, surface roughness, etc., as opposed to the references. The review shows that machine learning-based strength estimation yields reliable findings in comparison to experimental values. The review explores various machine learning models which are used to estimate concrete properties. The XGBoost produces the best accurate result (85%) with the lowest mean absolute error. The most significant shear strength and compressive strength features, according to an analysis of the relevance of the input parameters, are the ratio of shear span to effective depth, longitudinal reinforcement ratio, concrete strength, and volume percent of fiber. The analysis demonstrated that machine learning may be utilized successfully to determine the compressive and tensile properties of concrete." @default.
- W4366144494 created "2023-04-19" @default.
- W4366144494 creator A5000704102 @default.
- W4366144494 creator A5039388121 @default.
- W4366144494 creator A5059623671 @default.
- W4366144494 creator A5088383950 @default.
- W4366144494 date "2023-04-01" @default.
- W4366144494 modified "2023-10-06" @default.
- W4366144494 title "Machine learning for strength evaluation of concrete structures – Critical review" @default.
- W4366144494 cites W2893482420 @default.
- W4366144494 cites W2997733057 @default.
- W4366144494 cites W3045530378 @default.
- W4366144494 cites W3090789213 @default.
- W4366144494 cites W3094556934 @default.
- W4366144494 cites W3096154109 @default.
- W4366144494 cites W3133743901 @default.
- W4366144494 cites W3137835076 @default.
- W4366144494 cites W3157122772 @default.
- W4366144494 cites W4296656429 @default.
- W4366144494 cites W4311761038 @default.
- W4366144494 cites W4319160560 @default.
- W4366144494 cites W4323354814 @default.
- W4366144494 doi "https://doi.org/10.1016/j.matpr.2023.04.090" @default.
- W4366144494 hasPublicationYear "2023" @default.
- W4366144494 type Work @default.
- W4366144494 citedByCount "4" @default.
- W4366144494 countsByYear W43661444942023 @default.
- W4366144494 crossrefType "journal-article" @default.
- W4366144494 hasAuthorship W4366144494A5000704102 @default.
- W4366144494 hasAuthorship W4366144494A5039388121 @default.
- W4366144494 hasAuthorship W4366144494A5059623671 @default.
- W4366144494 hasAuthorship W4366144494A5088383950 @default.
- W4366144494 hasConcept C119857082 @default.
- W4366144494 hasConcept C12267149 @default.
- W4366144494 hasConcept C14948415 @default.
- W4366144494 hasConcept C154945302 @default.
- W4366144494 hasConcept C159985019 @default.
- W4366144494 hasConcept C192562407 @default.
- W4366144494 hasConcept C30407753 @default.
- W4366144494 hasConcept C41008148 @default.
- W4366144494 hasConcept C50644808 @default.
- W4366144494 hasConceptScore W4366144494C119857082 @default.
- W4366144494 hasConceptScore W4366144494C12267149 @default.
- W4366144494 hasConceptScore W4366144494C14948415 @default.
- W4366144494 hasConceptScore W4366144494C154945302 @default.
- W4366144494 hasConceptScore W4366144494C159985019 @default.
- W4366144494 hasConceptScore W4366144494C192562407 @default.
- W4366144494 hasConceptScore W4366144494C30407753 @default.
- W4366144494 hasConceptScore W4366144494C41008148 @default.
- W4366144494 hasConceptScore W4366144494C50644808 @default.
- W4366144494 hasLocation W43661444941 @default.
- W4366144494 hasOpenAccess W4366144494 @default.
- W4366144494 hasPrimaryLocation W43661444941 @default.
- W4366144494 hasRelatedWork W1983450045 @default.
- W4366144494 hasRelatedWork W2101819884 @default.
- W4366144494 hasRelatedWork W2168420310 @default.
- W4366144494 hasRelatedWork W2182184513 @default.
- W4366144494 hasRelatedWork W2520775273 @default.
- W4366144494 hasRelatedWork W2937631562 @default.
- W4366144494 hasRelatedWork W3194539120 @default.
- W4366144494 hasRelatedWork W4291214623 @default.
- W4366144494 hasRelatedWork W4361795583 @default.
- W4366144494 hasRelatedWork W4362499384 @default.
- W4366144494 isParatext "false" @default.
- W4366144494 isRetracted "false" @default.
- W4366144494 workType "article" @default.