Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366149080> ?p ?o ?g. }
- W4366149080 endingPage "17" @default.
- W4366149080 startingPage "1" @default.
- W4366149080 abstract "Protection of wetlands is important for ecosystem in recent years, and the classification of wetland ground cover is the foundation of investigation and protection work. Probabilistic collaborative representation classifier (ProCRC) is one of the best performing classifiers which has been applied in hyperspectral image (HSI) classification. However, its performance is greatly limited for wetland data where spectrums are highly similar. Moreover, the complex distribution of ground objects in wetlands have not been wisely utilized in the classification. In this article the intrinsic mechanism of ProCRC is found and its kernel version is proposed to solve the problems of wetlands classification. Then, a new ensemble learning strategy that considers neighborhood information are proposed, which largely alleviates the problem of sample collection in wetlands. Under the guidance of this strategy, two specific ensemble learning algorithms, i.e., LNE and LNSAE, are proposed. The superiority of proposed methods is validated using three typical HSI data sets of China coastal wetland with few samples." @default.
- W4366149080 created "2023-04-19" @default.
- W4366149080 creator A5017203161 @default.
- W4366149080 creator A5019014062 @default.
- W4366149080 creator A5025633795 @default.
- W4366149080 creator A5033017179 @default.
- W4366149080 creator A5050009113 @default.
- W4366149080 creator A5061038220 @default.
- W4366149080 date "2023-01-01" @default.
- W4366149080 modified "2023-10-16" @default.
- W4366149080 title "Probabilistic Collaborative Representation Based Ensemble Learning for Classification of Wetland Hyperspectral Imagery" @default.
- W4366149080 cites W1560724230 @default.
- W4366149080 cites W1973749534 @default.
- W4366149080 cites W1991359796 @default.
- W4366149080 cites W2001298023 @default.
- W4366149080 cites W2069231830 @default.
- W4366149080 cites W2071490777 @default.
- W4366149080 cites W2087263574 @default.
- W4366149080 cites W2096553553 @default.
- W4366149080 cites W2097915756 @default.
- W4366149080 cites W2098057602 @default.
- W4366149080 cites W2104269704 @default.
- W4366149080 cites W2113242816 @default.
- W4366149080 cites W2129812935 @default.
- W4366149080 cites W2132467081 @default.
- W4366149080 cites W2134686545 @default.
- W4366149080 cites W2150757437 @default.
- W4366149080 cites W2164330327 @default.
- W4366149080 cites W2167917621 @default.
- W4366149080 cites W2168875522 @default.
- W4366149080 cites W2463369078 @default.
- W4366149080 cites W2471678645 @default.
- W4366149080 cites W2767805377 @default.
- W4366149080 cites W2782420567 @default.
- W4366149080 cites W2795844359 @default.
- W4366149080 cites W2902973032 @default.
- W4366149080 cites W2910136527 @default.
- W4366149080 cites W2941273564 @default.
- W4366149080 cites W2950325582 @default.
- W4366149080 cites W2972359265 @default.
- W4366149080 cites W2998142089 @default.
- W4366149080 cites W3047647423 @default.
- W4366149080 cites W3080816325 @default.
- W4366149080 cites W3093600558 @default.
- W4366149080 cites W3100011500 @default.
- W4366149080 cites W3102476541 @default.
- W4366149080 cites W3111212275 @default.
- W4366149080 cites W3119997721 @default.
- W4366149080 cites W3120451683 @default.
- W4366149080 cites W3121070394 @default.
- W4366149080 cites W3162349352 @default.
- W4366149080 cites W3176962641 @default.
- W4366149080 cites W3187443852 @default.
- W4366149080 cites W3199351457 @default.
- W4366149080 cites W3201461236 @default.
- W4366149080 cites W3205209293 @default.
- W4366149080 cites W3213957520 @default.
- W4366149080 cites W4205421373 @default.
- W4366149080 cites W4206698887 @default.
- W4366149080 cites W4220853886 @default.
- W4366149080 cites W4220961468 @default.
- W4366149080 cites W4224238051 @default.
- W4366149080 cites W4226157809 @default.
- W4366149080 cites W4250955649 @default.
- W4366149080 cites W4283760989 @default.
- W4366149080 cites W4288067872 @default.
- W4366149080 cites W4290992925 @default.
- W4366149080 cites W4292348082 @default.
- W4366149080 cites W4293192749 @default.
- W4366149080 cites W4302032910 @default.
- W4366149080 cites W4313042514 @default.
- W4366149080 cites W4321484009 @default.
- W4366149080 cites W4365420606 @default.
- W4366149080 doi "https://doi.org/10.1109/tgrs.2023.3267638" @default.
- W4366149080 hasPublicationYear "2023" @default.
- W4366149080 type Work @default.
- W4366149080 citedByCount "3" @default.
- W4366149080 countsByYear W43661490802023 @default.
- W4366149080 crossrefType "journal-article" @default.
- W4366149080 hasAuthorship W4366149080A5017203161 @default.
- W4366149080 hasAuthorship W4366149080A5019014062 @default.
- W4366149080 hasAuthorship W4366149080A5025633795 @default.
- W4366149080 hasAuthorship W4366149080A5033017179 @default.
- W4366149080 hasAuthorship W4366149080A5050009113 @default.
- W4366149080 hasAuthorship W4366149080A5061038220 @default.
- W4366149080 hasConcept C110083411 @default.
- W4366149080 hasConcept C114614502 @default.
- W4366149080 hasConcept C119857082 @default.
- W4366149080 hasConcept C12267149 @default.
- W4366149080 hasConcept C124101348 @default.
- W4366149080 hasConcept C153180895 @default.
- W4366149080 hasConcept C154945302 @default.
- W4366149080 hasConcept C159078339 @default.
- W4366149080 hasConcept C18903297 @default.
- W4366149080 hasConcept C189119545 @default.
- W4366149080 hasConcept C205649164 @default.
- W4366149080 hasConcept C33923547 @default.
- W4366149080 hasConcept C41008148 @default.