Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366149097> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4366149097 endingPage "14" @default.
- W4366149097 startingPage "1" @default.
- W4366149097 abstract "Vehicle position prediction (VPP) is of great significance for navigation planning and traffic safety of intelligent vehicles. In general, particle filtering (PF) uses global navigation satellite system (GNSS) to implement VPP. However, it does not consider geographic layer information (GLI) and its particle weight is not combined with the real-world geographic position information, which leads to insufficient prediction preparation. To resolve this problem, we propose a novel PF-based VPP method by using three-dimensional convolutional neural network and long short-term memory (3D CNN-LSTM) network model. Firstly, for data preprocessing, we extract kinematic information features from GNSS, and evenly divide the area around each GNSS point into multiple grids and calculate the probability of grids center belonging to each GLI type. In addition, in order to better reflect the relationship between two consecutive positions due to the factors such as the conversion angle, we construct tilted cells to represent possible positions of each vehicle at any time. Secondly, a novel 3D CNN-LSTM model is designed to calculate the vehicle occurrence probability (VOP) in each tilted cell by processing the GLI and GNSS data, which can optimize the PF weight of each particle, and then improve PF to make more precise position prediction. Finally, the experimental results demonstrate that the proposed VPP method can improve the cell prediction accuracy, and then significantly improve the position prediction precision." @default.
- W4366149097 created "2023-04-19" @default.
- W4366149097 creator A5014382593 @default.
- W4366149097 creator A5031871177 @default.
- W4366149097 creator A5055812404 @default.
- W4366149097 date "2023-01-01" @default.
- W4366149097 modified "2023-09-25" @default.
- W4366149097 title "Vehicle Position Prediction Using Particle Filtering Based on 3D CNN-LSTM Model" @default.
- W4366149097 doi "https://doi.org/10.1109/tmc.2023.3267853" @default.
- W4366149097 hasPublicationYear "2023" @default.
- W4366149097 type Work @default.
- W4366149097 citedByCount "0" @default.
- W4366149097 crossrefType "journal-article" @default.
- W4366149097 hasAuthorship W4366149097A5014382593 @default.
- W4366149097 hasAuthorship W4366149097A5031871177 @default.
- W4366149097 hasAuthorship W4366149097A5055812404 @default.
- W4366149097 hasConcept C10138342 @default.
- W4366149097 hasConcept C124101348 @default.
- W4366149097 hasConcept C14279187 @default.
- W4366149097 hasConcept C154945302 @default.
- W4366149097 hasConcept C157286648 @default.
- W4366149097 hasConcept C162324750 @default.
- W4366149097 hasConcept C198082294 @default.
- W4366149097 hasConcept C2778027091 @default.
- W4366149097 hasConcept C31972630 @default.
- W4366149097 hasConcept C34736171 @default.
- W4366149097 hasConcept C41008148 @default.
- W4366149097 hasConcept C50644808 @default.
- W4366149097 hasConcept C52421305 @default.
- W4366149097 hasConcept C60229501 @default.
- W4366149097 hasConcept C76155785 @default.
- W4366149097 hasConcept C79403827 @default.
- W4366149097 hasConcept C81363708 @default.
- W4366149097 hasConceptScore W4366149097C10138342 @default.
- W4366149097 hasConceptScore W4366149097C124101348 @default.
- W4366149097 hasConceptScore W4366149097C14279187 @default.
- W4366149097 hasConceptScore W4366149097C154945302 @default.
- W4366149097 hasConceptScore W4366149097C157286648 @default.
- W4366149097 hasConceptScore W4366149097C162324750 @default.
- W4366149097 hasConceptScore W4366149097C198082294 @default.
- W4366149097 hasConceptScore W4366149097C2778027091 @default.
- W4366149097 hasConceptScore W4366149097C31972630 @default.
- W4366149097 hasConceptScore W4366149097C34736171 @default.
- W4366149097 hasConceptScore W4366149097C41008148 @default.
- W4366149097 hasConceptScore W4366149097C50644808 @default.
- W4366149097 hasConceptScore W4366149097C52421305 @default.
- W4366149097 hasConceptScore W4366149097C60229501 @default.
- W4366149097 hasConceptScore W4366149097C76155785 @default.
- W4366149097 hasConceptScore W4366149097C79403827 @default.
- W4366149097 hasConceptScore W4366149097C81363708 @default.
- W4366149097 hasLocation W43661490971 @default.
- W4366149097 hasOpenAccess W4366149097 @default.
- W4366149097 hasPrimaryLocation W43661490971 @default.
- W4366149097 hasRelatedWork W1887999017 @default.
- W4366149097 hasRelatedWork W1988760947 @default.
- W4366149097 hasRelatedWork W2022695726 @default.
- W4366149097 hasRelatedWork W2127461635 @default.
- W4366149097 hasRelatedWork W2164252747 @default.
- W4366149097 hasRelatedWork W2183380596 @default.
- W4366149097 hasRelatedWork W2188506513 @default.
- W4366149097 hasRelatedWork W2282975717 @default.
- W4366149097 hasRelatedWork W2768412479 @default.
- W4366149097 hasRelatedWork W3080567300 @default.
- W4366149097 isParatext "false" @default.
- W4366149097 isRetracted "false" @default.
- W4366149097 workType "article" @default.