Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366149100> ?p ?o ?g. }
- W4366149100 endingPage "209" @default.
- W4366149100 startingPage "202" @default.
- W4366149100 abstract "Smart traffic congestion reduction is actually a real challenge for big cities. Machine learning algorithms can play a significant role in traffic analysis, congestion prediction, and rerouting. In this paper, we propose a new prediction approach to reduce the traffic congestion problem by studying a scheme for predicting traffic flow information using four machine learning techniques: Feed Forward Neural Networks (FFNN), Radial Basis Function Neural Networks (RBFNN), simple linear regression model, and polynomial linear regression model. This prediction scheme is based on the following parameters: the average waiting time at entry and exit street pairs, the days of the week, hours of movement, holidays, and the rain rate. The results indicate that the FFNN technique overcomes the other techniques producing 97.6% prediction accuracy." @default.
- W4366149100 created "2023-04-19" @default.
- W4366149100 creator A5000426695 @default.
- W4366149100 creator A5014449134 @default.
- W4366149100 creator A5034597799 @default.
- W4366149100 creator A5043492852 @default.
- W4366149100 creator A5063598828 @default.
- W4366149100 creator A5066524385 @default.
- W4366149100 creator A5073429638 @default.
- W4366149100 date "2023-01-01" @default.
- W4366149100 modified "2023-10-18" @default.
- W4366149100 title "Traffic Congestion Prediction Based on Multivariate Modelling and Neural Networks Regressions" @default.
- W4366149100 cites W1817597756 @default.
- W4366149100 cites W1962833889 @default.
- W4366149100 cites W2108968924 @default.
- W4366149100 cites W2744429807 @default.
- W4366149100 cites W2905173653 @default.
- W4366149100 cites W2966126767 @default.
- W4366149100 cites W3006234708 @default.
- W4366149100 cites W3011019592 @default.
- W4366149100 cites W3033940652 @default.
- W4366149100 cites W3087970581 @default.
- W4366149100 cites W3209258816 @default.
- W4366149100 cites W4200002157 @default.
- W4366149100 doi "https://doi.org/10.1016/j.procs.2023.03.028" @default.
- W4366149100 hasPublicationYear "2023" @default.
- W4366149100 type Work @default.
- W4366149100 citedByCount "0" @default.
- W4366149100 crossrefType "journal-article" @default.
- W4366149100 hasAuthorship W4366149100A5000426695 @default.
- W4366149100 hasAuthorship W4366149100A5014449134 @default.
- W4366149100 hasAuthorship W4366149100A5034597799 @default.
- W4366149100 hasAuthorship W4366149100A5043492852 @default.
- W4366149100 hasAuthorship W4366149100A5063598828 @default.
- W4366149100 hasAuthorship W4366149100A5066524385 @default.
- W4366149100 hasAuthorship W4366149100A5073429638 @default.
- W4366149100 hasBestOaLocation W43661491001 @default.
- W4366149100 hasConcept C105795698 @default.
- W4366149100 hasConcept C111335779 @default.
- W4366149100 hasConcept C119857082 @default.
- W4366149100 hasConcept C12267149 @default.
- W4366149100 hasConcept C124101348 @default.
- W4366149100 hasConcept C127413603 @default.
- W4366149100 hasConcept C134306372 @default.
- W4366149100 hasConcept C152877465 @default.
- W4366149100 hasConcept C154945302 @default.
- W4366149100 hasConcept C158379750 @default.
- W4366149100 hasConcept C161584116 @default.
- W4366149100 hasConcept C195563490 @default.
- W4366149100 hasConcept C207512268 @default.
- W4366149100 hasConcept C22212356 @default.
- W4366149100 hasConcept C2524010 @default.
- W4366149100 hasConcept C2779888511 @default.
- W4366149100 hasConcept C31258907 @default.
- W4366149100 hasConcept C33923547 @default.
- W4366149100 hasConcept C41008148 @default.
- W4366149100 hasConcept C47702885 @default.
- W4366149100 hasConcept C48921125 @default.
- W4366149100 hasConcept C50644808 @default.
- W4366149100 hasConcept C77618280 @default.
- W4366149100 hasConcept C83546350 @default.
- W4366149100 hasConcept C98856871 @default.
- W4366149100 hasConceptScore W4366149100C105795698 @default.
- W4366149100 hasConceptScore W4366149100C111335779 @default.
- W4366149100 hasConceptScore W4366149100C119857082 @default.
- W4366149100 hasConceptScore W4366149100C12267149 @default.
- W4366149100 hasConceptScore W4366149100C124101348 @default.
- W4366149100 hasConceptScore W4366149100C127413603 @default.
- W4366149100 hasConceptScore W4366149100C134306372 @default.
- W4366149100 hasConceptScore W4366149100C152877465 @default.
- W4366149100 hasConceptScore W4366149100C154945302 @default.
- W4366149100 hasConceptScore W4366149100C158379750 @default.
- W4366149100 hasConceptScore W4366149100C161584116 @default.
- W4366149100 hasConceptScore W4366149100C195563490 @default.
- W4366149100 hasConceptScore W4366149100C207512268 @default.
- W4366149100 hasConceptScore W4366149100C22212356 @default.
- W4366149100 hasConceptScore W4366149100C2524010 @default.
- W4366149100 hasConceptScore W4366149100C2779888511 @default.
- W4366149100 hasConceptScore W4366149100C31258907 @default.
- W4366149100 hasConceptScore W4366149100C33923547 @default.
- W4366149100 hasConceptScore W4366149100C41008148 @default.
- W4366149100 hasConceptScore W4366149100C47702885 @default.
- W4366149100 hasConceptScore W4366149100C48921125 @default.
- W4366149100 hasConceptScore W4366149100C50644808 @default.
- W4366149100 hasConceptScore W4366149100C77618280 @default.
- W4366149100 hasConceptScore W4366149100C83546350 @default.
- W4366149100 hasConceptScore W4366149100C98856871 @default.
- W4366149100 hasFunder F4320324215 @default.
- W4366149100 hasFunder F4320335042 @default.
- W4366149100 hasLocation W43661491001 @default.
- W4366149100 hasOpenAccess W4366149100 @default.
- W4366149100 hasPrimaryLocation W43661491001 @default.
- W4366149100 hasRelatedWork W1970158984 @default.
- W4366149100 hasRelatedWork W1978873901 @default.
- W4366149100 hasRelatedWork W1996541855 @default.
- W4366149100 hasRelatedWork W2075210509 @default.
- W4366149100 hasRelatedWork W2151356126 @default.
- W4366149100 hasRelatedWork W2361261277 @default.