Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366152714> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4366152714 abstract "The two emerging technologies are machine learning and artificial intelligence, and as we all know, quantum computing is one of the most revolutionary developments in technology. Researchers are considering combining machine learning and quantum computing with the advancements in both fields. As a result, quantum machine learning-a fusion of these two fields-has evolved. It has the capacity to effectively address a wide range of real-world issues. Both fields will surely benefit from the combined results of the two fields. When the potential of quantum principles and its peculiarities is employed with machine learning, quantum machine learning reaches a very advanced level. Now that quantum concepts are being incorporated, traditional machine learning algorithms like SVM, PCA, and KNN are being reviewed as QSVM, Q-KNN, and QPCA, which are the most effective and powerful techniques for quantum machine learning. Quantum machine learning is a boom for the future; it will soon vastly surpass even the most advanced neural networks, deep learning systems, and machine learning systems of today. Modern machine learning is quicker than classical computing thanks to quantum machine learning, which is concerned with quantum software. Quantum data from an artificial quantum system is what QML is based on. In this paper, we will also study about the future network that is quantum network, which will be use by replacing classical networking. By enabling quantum communication between any two sites on Earth, a quantum internet is intended to fundamentally advance internet technology." @default.
- W4366152714 created "2023-04-19" @default.
- W4366152714 creator A5010351550 @default.
- W4366152714 creator A5014030694 @default.
- W4366152714 creator A5049673217 @default.
- W4366152714 creator A5077454839 @default.
- W4366152714 creator A5082413170 @default.
- W4366152714 date "2022-12-01" @default.
- W4366152714 modified "2023-10-18" @default.
- W4366152714 title "Quantum Machine Learning and Quantum Communication Networks: The 2030s and the Future" @default.
- W4366152714 cites W1988369744 @default.
- W4366152714 cites W2124269824 @default.
- W4366152714 cites W2521267242 @default.
- W4366152714 cites W3024844127 @default.
- W4366152714 cites W3104599990 @default.
- W4366152714 cites W3196922736 @default.
- W4366152714 cites W3204684533 @default.
- W4366152714 cites W4213153631 @default.
- W4366152714 cites W4236362309 @default.
- W4366152714 cites W4285087870 @default.
- W4366152714 cites W4297035740 @default.
- W4366152714 doi "https://doi.org/10.1109/iccmso58359.2022.00025" @default.
- W4366152714 hasPublicationYear "2022" @default.
- W4366152714 type Work @default.
- W4366152714 citedByCount "0" @default.
- W4366152714 crossrefType "proceedings-article" @default.
- W4366152714 hasAuthorship W4366152714A5010351550 @default.
- W4366152714 hasAuthorship W4366152714A5014030694 @default.
- W4366152714 hasAuthorship W4366152714A5049673217 @default.
- W4366152714 hasAuthorship W4366152714A5077454839 @default.
- W4366152714 hasAuthorship W4366152714A5082413170 @default.
- W4366152714 hasConcept C119857082 @default.
- W4366152714 hasConcept C121040770 @default.
- W4366152714 hasConcept C121332964 @default.
- W4366152714 hasConcept C154945302 @default.
- W4366152714 hasConcept C186468114 @default.
- W4366152714 hasConcept C190463098 @default.
- W4366152714 hasConcept C190474826 @default.
- W4366152714 hasConcept C2779094486 @default.
- W4366152714 hasConcept C41008148 @default.
- W4366152714 hasConcept C5320026 @default.
- W4366152714 hasConcept C58053490 @default.
- W4366152714 hasConcept C62520636 @default.
- W4366152714 hasConcept C84114770 @default.
- W4366152714 hasConceptScore W4366152714C119857082 @default.
- W4366152714 hasConceptScore W4366152714C121040770 @default.
- W4366152714 hasConceptScore W4366152714C121332964 @default.
- W4366152714 hasConceptScore W4366152714C154945302 @default.
- W4366152714 hasConceptScore W4366152714C186468114 @default.
- W4366152714 hasConceptScore W4366152714C190463098 @default.
- W4366152714 hasConceptScore W4366152714C190474826 @default.
- W4366152714 hasConceptScore W4366152714C2779094486 @default.
- W4366152714 hasConceptScore W4366152714C41008148 @default.
- W4366152714 hasConceptScore W4366152714C5320026 @default.
- W4366152714 hasConceptScore W4366152714C58053490 @default.
- W4366152714 hasConceptScore W4366152714C62520636 @default.
- W4366152714 hasConceptScore W4366152714C84114770 @default.
- W4366152714 hasLocation W43661527141 @default.
- W4366152714 hasOpenAccess W4366152714 @default.
- W4366152714 hasPrimaryLocation W43661527141 @default.
- W4366152714 hasRelatedWork W2357274244 @default.
- W4366152714 hasRelatedWork W2792315573 @default.
- W4366152714 hasRelatedWork W3011253813 @default.
- W4366152714 hasRelatedWork W3096894274 @default.
- W4366152714 hasRelatedWork W3103076608 @default.
- W4366152714 hasRelatedWork W3121134414 @default.
- W4366152714 hasRelatedWork W4287512151 @default.
- W4366152714 hasRelatedWork W4292070515 @default.
- W4366152714 hasRelatedWork W4311995654 @default.
- W4366152714 hasRelatedWork W4315926640 @default.
- W4366152714 isParatext "false" @default.
- W4366152714 isRetracted "false" @default.
- W4366152714 workType "article" @default.