Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366162842> ?p ?o ?g. }
- W4366162842 endingPage "220" @default.
- W4366162842 startingPage "205" @default.
- W4366162842 abstract "Abstract Seizure prediction algorithms have been central in the field of data analysis for the improvement of epileptic patients’ lives. The most recent advancements of which include the use of deep neural networks to present an optimized, accurate seizure prediction system. This work puts forth deep learning methods to automate the process of epileptic seizure detection with electroencephalogram (EEG) signals as input; both a patient-specific and general approach are followed. EEG signals are time structure series motivating the use of sequence algorithms such as temporal convolutional neural networks (TCNNs), and long short-term memory networks. We then compare this methodology to other prior pre-implemented structures, including our previous work for seizure prediction using machine learning approaches support vector machine and random under-sampling boost. Moreover, patient-specific and general seizure prediction approaches are used to evaluate the performance of the best algorithms. Area under curve (AUC) is used to select the best performing algorithm to account for the imbalanced dataset. The presented TCNN model showed the best patient-specific results than that of the general approach with, AUC of 0.73, while ML model had the best results for general classification with AUC of 0.75." @default.
- W4366162842 created "2023-04-19" @default.
- W4366162842 creator A5013602181 @default.
- W4366162842 creator A5039330377 @default.
- W4366162842 creator A5046204197 @default.
- W4366162842 creator A5069146692 @default.
- W4366162842 date "2023-04-17" @default.
- W4366162842 modified "2023-10-15" @default.
- W4366162842 title "General and patient-specific seizure classification using deep neural networks" @default.
- W4366162842 cites W1566689562 @default.
- W4366162842 cites W1963684335 @default.
- W4366162842 cites W2127261457 @default.
- W4366162842 cites W2128011414 @default.
- W4366162842 cites W2148143831 @default.
- W4366162842 cites W2155390087 @default.
- W4366162842 cites W2741907166 @default.
- W4366162842 cites W2791485253 @default.
- W4366162842 cites W2883873695 @default.
- W4366162842 cites W2910688461 @default.
- W4366162842 cites W2944851425 @default.
- W4366162842 cites W2947006486 @default.
- W4366162842 cites W2954740233 @default.
- W4366162842 cites W2976267777 @default.
- W4366162842 cites W2979352283 @default.
- W4366162842 cites W3017056835 @default.
- W4366162842 cites W3045153122 @default.
- W4366162842 cites W3048221011 @default.
- W4366162842 cites W3102455230 @default.
- W4366162842 cites W3112695512 @default.
- W4366162842 cites W3117831778 @default.
- W4366162842 cites W3125415690 @default.
- W4366162842 cites W3138797496 @default.
- W4366162842 cites W3152183399 @default.
- W4366162842 cites W3153903265 @default.
- W4366162842 cites W3165244048 @default.
- W4366162842 cites W3165430704 @default.
- W4366162842 cites W3174547003 @default.
- W4366162842 cites W3181752113 @default.
- W4366162842 cites W3195704499 @default.
- W4366162842 cites W3199160282 @default.
- W4366162842 cites W3213666731 @default.
- W4366162842 cites W4205565726 @default.
- W4366162842 cites W4206136594 @default.
- W4366162842 cites W4206291678 @default.
- W4366162842 cites W4207011236 @default.
- W4366162842 cites W4210442965 @default.
- W4366162842 cites W4210474990 @default.
- W4366162842 cites W4210579791 @default.
- W4366162842 cites W4210590235 @default.
- W4366162842 cites W4210706221 @default.
- W4366162842 cites W4211148484 @default.
- W4366162842 cites W4229037719 @default.
- W4366162842 cites W4250919045 @default.
- W4366162842 cites W610017488 @default.
- W4366162842 cites W877297219 @default.
- W4366162842 doi "https://doi.org/10.1007/s10470-023-02153-z" @default.
- W4366162842 hasPublicationYear "2023" @default.
- W4366162842 type Work @default.
- W4366162842 citedByCount "1" @default.
- W4366162842 crossrefType "journal-article" @default.
- W4366162842 hasAuthorship W4366162842A5013602181 @default.
- W4366162842 hasAuthorship W4366162842A5039330377 @default.
- W4366162842 hasAuthorship W4366162842A5046204197 @default.
- W4366162842 hasAuthorship W4366162842A5069146692 @default.
- W4366162842 hasBestOaLocation W43661628421 @default.
- W4366162842 hasConcept C108583219 @default.
- W4366162842 hasConcept C111919701 @default.
- W4366162842 hasConcept C118552586 @default.
- W4366162842 hasConcept C119857082 @default.
- W4366162842 hasConcept C12267149 @default.
- W4366162842 hasConcept C147168706 @default.
- W4366162842 hasConcept C153180895 @default.
- W4366162842 hasConcept C154945302 @default.
- W4366162842 hasConcept C202444582 @default.
- W4366162842 hasConcept C2779334592 @default.
- W4366162842 hasConcept C33923547 @default.
- W4366162842 hasConcept C41008148 @default.
- W4366162842 hasConcept C50644808 @default.
- W4366162842 hasConcept C522805319 @default.
- W4366162842 hasConcept C71924100 @default.
- W4366162842 hasConcept C81363708 @default.
- W4366162842 hasConcept C9652623 @default.
- W4366162842 hasConcept C98045186 @default.
- W4366162842 hasConceptScore W4366162842C108583219 @default.
- W4366162842 hasConceptScore W4366162842C111919701 @default.
- W4366162842 hasConceptScore W4366162842C118552586 @default.
- W4366162842 hasConceptScore W4366162842C119857082 @default.
- W4366162842 hasConceptScore W4366162842C12267149 @default.
- W4366162842 hasConceptScore W4366162842C147168706 @default.
- W4366162842 hasConceptScore W4366162842C153180895 @default.
- W4366162842 hasConceptScore W4366162842C154945302 @default.
- W4366162842 hasConceptScore W4366162842C202444582 @default.
- W4366162842 hasConceptScore W4366162842C2779334592 @default.
- W4366162842 hasConceptScore W4366162842C33923547 @default.
- W4366162842 hasConceptScore W4366162842C41008148 @default.
- W4366162842 hasConceptScore W4366162842C50644808 @default.
- W4366162842 hasConceptScore W4366162842C522805319 @default.
- W4366162842 hasConceptScore W4366162842C71924100 @default.