Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366163660> ?p ?o ?g. }
- W4366163660 endingPage "2743" @default.
- W4366163660 startingPage "2732" @default.
- W4366163660 abstract "Proteins are essential components of all living cells and so the study of their in situ expression, proteomics, has wide reaching applications. Peptide identification in proteomics typically relies on matching high resolution tandem mass spectra to a protein database but can also be performed de novo. While artificial spectra have been successfully incorporated into database search pipelines to increase peptide identification rates, little work has been done to investigate the utility of artificial spectra in the context of de novo peptide identification. Here, we perform a critical analysis of the use of artificial data for the training and evaluation of de novo peptide identification algorithms. First, we classify the different fragment ion types present in real spectra and then estimate the number of spurious matches using random peptides. We then categorise the different types of noise present in real spectra. Finally, we transfer this knowledge to artificial data and test the performance of a state-of-the-art de novo peptide identification algorithm trained using artificial spectra with and without relevant noise addition. Noise supplementation increased artificial training data performance from 30% to 77% of real training data peptide recall. While real data performance was not fully replicated, this work provides the first steps towards an artificial spectrum framework for the training and evaluation of de novo peptide identification algorithms. Further enhanced artificial spectra may allow for more in depth analysis of de novo algorithms as well as alleviating the reliance on database searches for training data." @default.
- W4366163660 created "2023-04-19" @default.
- W4366163660 creator A5018497012 @default.
- W4366163660 creator A5051463129 @default.
- W4366163660 creator A5074452240 @default.
- W4366163660 date "2023-01-01" @default.
- W4366163660 modified "2023-09-28" @default.
- W4366163660 title "Critical evaluation of the use of artificial data for machine learning based de novo peptide identification" @default.
- W4366163660 cites W1510000497 @default.
- W4366163660 cites W1607571400 @default.
- W4366163660 cites W1974218884 @default.
- W4366163660 cites W1978640976 @default.
- W4366163660 cites W1981337935 @default.
- W4366163660 cites W1981978551 @default.
- W4366163660 cites W1988667155 @default.
- W4366163660 cites W1992569041 @default.
- W4366163660 cites W1999751815 @default.
- W4366163660 cites W2011548416 @default.
- W4366163660 cites W2017064873 @default.
- W4366163660 cites W2017801880 @default.
- W4366163660 cites W2019513372 @default.
- W4366163660 cites W2021501656 @default.
- W4366163660 cites W2030652009 @default.
- W4366163660 cites W2035769860 @default.
- W4366163660 cites W2046872827 @default.
- W4366163660 cites W2056060596 @default.
- W4366163660 cites W2070458309 @default.
- W4366163660 cites W2073401456 @default.
- W4366163660 cites W2082006641 @default.
- W4366163660 cites W2087481305 @default.
- W4366163660 cites W2101879802 @default.
- W4366163660 cites W2105556779 @default.
- W4366163660 cites W2113381588 @default.
- W4366163660 cites W2129343699 @default.
- W4366163660 cites W2135078307 @default.
- W4366163660 cites W2137238178 @default.
- W4366163660 cites W2139096442 @default.
- W4366163660 cites W2158711161 @default.
- W4366163660 cites W2461971948 @default.
- W4366163660 cites W2465480251 @default.
- W4366163660 cites W2512489438 @default.
- W4366163660 cites W2531537628 @default.
- W4366163660 cites W2534610127 @default.
- W4366163660 cites W2548763820 @default.
- W4366163660 cites W2561019872 @default.
- W4366163660 cites W2565502474 @default.
- W4366163660 cites W2566894387 @default.
- W4366163660 cites W2575647550 @default.
- W4366163660 cites W2603081759 @default.
- W4366163660 cites W2608461606 @default.
- W4366163660 cites W2736859409 @default.
- W4366163660 cites W2884805522 @default.
- W4366163660 cites W2905906027 @default.
- W4366163660 cites W2945525532 @default.
- W4366163660 cites W2947763854 @default.
- W4366163660 cites W2953526512 @default.
- W4366163660 cites W3005653329 @default.
- W4366163660 cites W3015471667 @default.
- W4366163660 cites W3116890009 @default.
- W4366163660 cites W3136924813 @default.
- W4366163660 cites W3166254754 @default.
- W4366163660 cites W4206447491 @default.
- W4366163660 cites W4210902118 @default.
- W4366163660 cites W4220814681 @default.
- W4366163660 cites W4285090325 @default.
- W4366163660 cites W4311911479 @default.
- W4366163660 cites W752259472 @default.
- W4366163660 doi "https://doi.org/10.1016/j.csbj.2023.04.014" @default.
- W4366163660 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37168871" @default.
- W4366163660 hasPublicationYear "2023" @default.
- W4366163660 type Work @default.
- W4366163660 citedByCount "0" @default.
- W4366163660 crossrefType "journal-article" @default.
- W4366163660 hasAuthorship W4366163660A5018497012 @default.
- W4366163660 hasAuthorship W4366163660A5051463129 @default.
- W4366163660 hasAuthorship W4366163660A5074452240 @default.
- W4366163660 hasBestOaLocation W43661636601 @default.
- W4366163660 hasConcept C115961682 @default.
- W4366163660 hasConcept C116834253 @default.
- W4366163660 hasConcept C119857082 @default.
- W4366163660 hasConcept C151730666 @default.
- W4366163660 hasConcept C154945302 @default.
- W4366163660 hasConcept C2779343474 @default.
- W4366163660 hasConcept C41008148 @default.
- W4366163660 hasConcept C59822182 @default.
- W4366163660 hasConcept C86803240 @default.
- W4366163660 hasConcept C99498987 @default.
- W4366163660 hasConceptScore W4366163660C115961682 @default.
- W4366163660 hasConceptScore W4366163660C116834253 @default.
- W4366163660 hasConceptScore W4366163660C119857082 @default.
- W4366163660 hasConceptScore W4366163660C151730666 @default.
- W4366163660 hasConceptScore W4366163660C154945302 @default.
- W4366163660 hasConceptScore W4366163660C2779343474 @default.
- W4366163660 hasConceptScore W4366163660C41008148 @default.
- W4366163660 hasConceptScore W4366163660C59822182 @default.
- W4366163660 hasConceptScore W4366163660C86803240 @default.
- W4366163660 hasConceptScore W4366163660C99498987 @default.
- W4366163660 hasFunder F4320320842 @default.