Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366165071> ?p ?o ?g. }
- W4366165071 endingPage "137" @default.
- W4366165071 startingPage "101" @default.
- W4366165071 abstract "This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra (S0(Rd),‖ ⋅ ‖S0) and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice." @default.
- W4366165071 created "2023-04-19" @default.
- W4366165071 creator A5016044961 @default.
- W4366165071 creator A5077204791 @default.
- W4366165071 creator A5084861530 @default.
- W4366165071 date "2023-09-01" @default.
- W4366165071 modified "2023-09-23" @default.
- W4366165071 title "Double preconditioning for Gabor frame operators: Algebraic, functional analytic and numerical aspects" @default.
- W4366165071 cites W147394719 @default.
- W4366165071 cites W1605417594 @default.
- W4366165071 cites W1693758831 @default.
- W4366165071 cites W1693805802 @default.
- W4366165071 cites W1966154270 @default.
- W4366165071 cites W1967105733 @default.
- W4366165071 cites W1971405647 @default.
- W4366165071 cites W1983753638 @default.
- W4366165071 cites W1991701719 @default.
- W4366165071 cites W1996021349 @default.
- W4366165071 cites W2010386221 @default.
- W4366165071 cites W2014334054 @default.
- W4366165071 cites W2023501224 @default.
- W4366165071 cites W2041334070 @default.
- W4366165071 cites W2048032666 @default.
- W4366165071 cites W2053081087 @default.
- W4366165071 cites W2062189399 @default.
- W4366165071 cites W2090759340 @default.
- W4366165071 cites W2095339500 @default.
- W4366165071 cites W2098365131 @default.
- W4366165071 cites W2100395640 @default.
- W4366165071 cites W2109438957 @default.
- W4366165071 cites W2112133784 @default.
- W4366165071 cites W2130331495 @default.
- W4366165071 cites W2132629794 @default.
- W4366165071 cites W2138152282 @default.
- W4366165071 cites W2139717162 @default.
- W4366165071 cites W2144424682 @default.
- W4366165071 cites W2169808774 @default.
- W4366165071 cites W2245473479 @default.
- W4366165071 cites W2324421735 @default.
- W4366165071 cites W2740215163 @default.
- W4366165071 cites W2764484512 @default.
- W4366165071 cites W2963213835 @default.
- W4366165071 cites W2963901503 @default.
- W4366165071 cites W3102146249 @default.
- W4366165071 cites W3116676448 @default.
- W4366165071 cites W4210417065 @default.
- W4366165071 cites W4242359720 @default.
- W4366165071 cites W4292166688 @default.
- W4366165071 cites W2114562420 @default.
- W4366165071 doi "https://doi.org/10.1016/j.acha.2023.04.001" @default.
- W4366165071 hasPublicationYear "2023" @default.
- W4366165071 type Work @default.
- W4366165071 citedByCount "0" @default.
- W4366165071 crossrefType "journal-article" @default.
- W4366165071 hasAuthorship W4366165071A5016044961 @default.
- W4366165071 hasAuthorship W4366165071A5077204791 @default.
- W4366165071 hasAuthorship W4366165071A5084861530 @default.
- W4366165071 hasConcept C104317684 @default.
- W4366165071 hasConcept C121332964 @default.
- W4366165071 hasConcept C130367717 @default.
- W4366165071 hasConcept C134306372 @default.
- W4366165071 hasConcept C136119220 @default.
- W4366165071 hasConcept C136902061 @default.
- W4366165071 hasConcept C142433447 @default.
- W4366165071 hasConcept C154945302 @default.
- W4366165071 hasConcept C158448853 @default.
- W4366165071 hasConcept C17020691 @default.
- W4366165071 hasConcept C173149727 @default.
- W4366165071 hasConcept C177148314 @default.
- W4366165071 hasConcept C182419690 @default.
- W4366165071 hasConcept C185592680 @default.
- W4366165071 hasConcept C196216189 @default.
- W4366165071 hasConcept C202444582 @default.
- W4366165071 hasConcept C24890656 @default.
- W4366165071 hasConcept C2524010 @default.
- W4366165071 hasConcept C2781204021 @default.
- W4366165071 hasConcept C33923547 @default.
- W4366165071 hasConcept C41008148 @default.
- W4366165071 hasConcept C46286280 @default.
- W4366165071 hasConcept C47432892 @default.
- W4366165071 hasConcept C554190296 @default.
- W4366165071 hasConcept C55493867 @default.
- W4366165071 hasConcept C76155785 @default.
- W4366165071 hasConcept C86339819 @default.
- W4366165071 hasConcept C9376300 @default.
- W4366165071 hasConceptScore W4366165071C104317684 @default.
- W4366165071 hasConceptScore W4366165071C121332964 @default.
- W4366165071 hasConceptScore W4366165071C130367717 @default.
- W4366165071 hasConceptScore W4366165071C134306372 @default.
- W4366165071 hasConceptScore W4366165071C136119220 @default.
- W4366165071 hasConceptScore W4366165071C136902061 @default.
- W4366165071 hasConceptScore W4366165071C142433447 @default.
- W4366165071 hasConceptScore W4366165071C154945302 @default.
- W4366165071 hasConceptScore W4366165071C158448853 @default.
- W4366165071 hasConceptScore W4366165071C17020691 @default.
- W4366165071 hasConceptScore W4366165071C173149727 @default.
- W4366165071 hasConceptScore W4366165071C177148314 @default.
- W4366165071 hasConceptScore W4366165071C182419690 @default.