Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366165304> ?p ?o ?g. }
- W4366165304 endingPage "120103" @default.
- W4366165304 startingPage "120103" @default.
- W4366165304 abstract "The sanitary emergency caused by COVID-19 has compromised countries and generated a worldwide health and economic crisis. To provide support to the countries' responses, numerous lines of research have been developed. The spotlight was put on effectively and rapidly diagnosing and predicting the evolution of the pandemic, one of the most challenging problems of the past months. This work contributes to the existing literature by developing a two-step methodology to analyze the transmission rate, designing models applied to territories with similar pandemic behavior characteristics. Virus transmission is considered as bacterial growth curves to understand the spread of the virus and to make predictions about its future evolution. Hence, an analytical clustering procedure is first applied to create groups of locations where the virus transmission rate behaved similarly in the different outbreaks. A curve decomposition process based on an iterative polynomial process is then applied, obtaining meaningful forecasting features. Information of the territories belonging to the same cluster is merged to build models capable of simultaneously predicting the 14-day incidence in several locations using Evolutionary Artificial Neural Networks. The methodology is applied to Andalusia (Spain), although it is applicable to any region across the world. Individual models trained for a specific territory are carried out for comparison purposes. The results demonstrate that this methodology achieves statistically similar, or even better, performance for most of the locations. In addition to being extremely competitive, the main advantage of the proposal lies in its complexity cost reduction. The total number of parameters to be estimated is reduced up to 93.51% for the short term and 93.31% for the mid-term forecasting, respectively. Moreover, the number of required models is reduced by 73.53% and 58.82% for the short- and mid-term forecasting horizons." @default.
- W4366165304 created "2023-04-19" @default.
- W4366165304 creator A5039083315 @default.
- W4366165304 creator A5054424585 @default.
- W4366165304 creator A5063964437 @default.
- W4366165304 creator A5086980043 @default.
- W4366165304 date "2023-09-01" @default.
- W4366165304 modified "2023-10-18" @default.
- W4366165304 title "Cluster analysis and forecasting of viruses incidence growth curves: Application to SARS-CoV-2" @default.
- W4366165304 cites W1498436455 @default.
- W4366165304 cites W1529948776 @default.
- W4366165304 cites W1894414046 @default.
- W4366165304 cites W1985059878 @default.
- W4366165304 cites W1987971958 @default.
- W4366165304 cites W1993822553 @default.
- W4366165304 cites W2016381774 @default.
- W4366165304 cites W2018444051 @default.
- W4366165304 cites W2019637204 @default.
- W4366165304 cites W2034494306 @default.
- W4366165304 cites W2051815811 @default.
- W4366165304 cites W2072245049 @default.
- W4366165304 cites W2081070226 @default.
- W4366165304 cites W2085487226 @default.
- W4366165304 cites W2092192451 @default.
- W4366165304 cites W2117829824 @default.
- W4366165304 cites W2125121527 @default.
- W4366165304 cites W2150097763 @default.
- W4366165304 cites W2158689233 @default.
- W4366165304 cites W2179562297 @default.
- W4366165304 cites W2254535312 @default.
- W4366165304 cites W2333660082 @default.
- W4366165304 cites W2342680502 @default.
- W4366165304 cites W2498118637 @default.
- W4366165304 cites W2751669721 @default.
- W4366165304 cites W2883228808 @default.
- W4366165304 cites W2887568436 @default.
- W4366165304 cites W2892035503 @default.
- W4366165304 cites W3000384276 @default.
- W4366165304 cites W3009994579 @default.
- W4366165304 cites W3012211282 @default.
- W4366165304 cites W3013594674 @default.
- W4366165304 cites W3016448052 @default.
- W4366165304 cites W3016480934 @default.
- W4366165304 cites W3021882509 @default.
- W4366165304 cites W3022643593 @default.
- W4366165304 cites W3022787740 @default.
- W4366165304 cites W3025471795 @default.
- W4366165304 cites W3027579178 @default.
- W4366165304 cites W3038075184 @default.
- W4366165304 cites W3046555906 @default.
- W4366165304 cites W3046850558 @default.
- W4366165304 cites W3048749423 @default.
- W4366165304 cites W3049310425 @default.
- W4366165304 cites W3087741866 @default.
- W4366165304 cites W3093758471 @default.
- W4366165304 cites W3098122596 @default.
- W4366165304 cites W3120236591 @default.
- W4366165304 cites W3125950809 @default.
- W4366165304 cites W3157166661 @default.
- W4366165304 cites W3165052748 @default.
- W4366165304 cites W3181646358 @default.
- W4366165304 cites W4200029960 @default.
- W4366165304 cites W4205170082 @default.
- W4366165304 cites W4213240869 @default.
- W4366165304 cites W4214494063 @default.
- W4366165304 cites W4220873688 @default.
- W4366165304 cites W4220940048 @default.
- W4366165304 cites W4255375128 @default.
- W4366165304 cites W4280572530 @default.
- W4366165304 cites W4281253976 @default.
- W4366165304 cites W4283787275 @default.
- W4366165304 cites W4293764477 @default.
- W4366165304 cites W4294184025 @default.
- W4366165304 cites W4294362077 @default.
- W4366165304 cites W4304944610 @default.
- W4366165304 doi "https://doi.org/10.1016/j.eswa.2023.120103" @default.
- W4366165304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37090447" @default.
- W4366165304 hasPublicationYear "2023" @default.
- W4366165304 type Work @default.
- W4366165304 citedByCount "0" @default.
- W4366165304 crossrefType "journal-article" @default.
- W4366165304 hasAuthorship W4366165304A5039083315 @default.
- W4366165304 hasAuthorship W4366165304A5054424585 @default.
- W4366165304 hasAuthorship W4366165304A5063964437 @default.
- W4366165304 hasAuthorship W4366165304A5086980043 @default.
- W4366165304 hasBestOaLocation W43661653041 @default.
- W4366165304 hasConcept C111919701 @default.
- W4366165304 hasConcept C124101348 @default.
- W4366165304 hasConcept C142724271 @default.
- W4366165304 hasConcept C154945302 @default.
- W4366165304 hasConcept C164866538 @default.
- W4366165304 hasConcept C199360897 @default.
- W4366165304 hasConcept C2779134260 @default.
- W4366165304 hasConcept C3008058167 @default.
- W4366165304 hasConcept C33923547 @default.
- W4366165304 hasConcept C41008148 @default.
- W4366165304 hasConcept C42475967 @default.
- W4366165304 hasConcept C50644808 @default.