Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366166987> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4366166987 endingPage "104828" @default.
- W4366166987 startingPage "104828" @default.
- W4366166987 abstract "In recent decades, the ultimate output from microarray assay, has produced enormous numbers of microarray datasets, regardless of the used technology. These datasets include complex and high dimensional samples and genes that the number of samples is much smaller than the number of genes (features). Due to the redundant dimensions in these datasets, processing them directly not only leads to poor performance but also increases computation time and memory usage. Feature selection reduces computational expense while improving or maintaining diagnosis accuracy. In this study, we propose a new supervised feature selection method based on a manifold learning approach. We focus in two different directions to address this issue. First, maximum relevancy criterion that achieves by integrating Supervised Laplacian Eigenmaps (S-LE) and a matrix, which can realize the process of feature selection. The applied criterion simultaneously opts the features that make same-class samples closer to each other and ignores the features that cause different-class samples be near. Second, minimum redundancy among selected features by applying the Pearson correlation coefficient. In the test phase, the proposed method is compared with ten state-of-the-art algorithms on seven microarray datasets. Reported results show that the proposed method has more promising performance than the other methods." @default.
- W4366166987 created "2023-04-19" @default.
- W4366166987 creator A5023580455 @default.
- W4366166987 creator A5059979499 @default.
- W4366166987 creator A5083037168 @default.
- W4366166987 date "2023-06-01" @default.
- W4366166987 modified "2023-10-17" @default.
- W4366166987 title "Supervised feature selection on gene expression microarray datasets using manifold learning" @default.
- W4366166987 cites W1500895378 @default.
- W4366166987 cites W1983704480 @default.
- W4366166987 cites W1997575533 @default.
- W4366166987 cites W2049832889 @default.
- W4366166987 cites W2063385051 @default.
- W4366166987 cites W2085770564 @default.
- W4366166987 cites W2103291381 @default.
- W4366166987 cites W2125056473 @default.
- W4366166987 cites W2142594886 @default.
- W4366166987 cites W2146713522 @default.
- W4366166987 cites W2154053567 @default.
- W4366166987 cites W2165466912 @default.
- W4366166987 cites W2549481570 @default.
- W4366166987 cites W2605922627 @default.
- W4366166987 cites W2774952377 @default.
- W4366166987 cites W2909393029 @default.
- W4366166987 cites W2965743638 @default.
- W4366166987 cites W3008058450 @default.
- W4366166987 cites W3157413134 @default.
- W4366166987 cites W3186062074 @default.
- W4366166987 cites W3197227262 @default.
- W4366166987 cites W3211148891 @default.
- W4366166987 cites W4220764546 @default.
- W4366166987 cites W4225149351 @default.
- W4366166987 cites W4281658410 @default.
- W4366166987 cites W4294704621 @default.
- W4366166987 cites W4302009885 @default.
- W4366166987 doi "https://doi.org/10.1016/j.chemolab.2023.104828" @default.
- W4366166987 hasPublicationYear "2023" @default.
- W4366166987 type Work @default.
- W4366166987 citedByCount "0" @default.
- W4366166987 crossrefType "journal-article" @default.
- W4366166987 hasAuthorship W4366166987A5023580455 @default.
- W4366166987 hasAuthorship W4366166987A5059979499 @default.
- W4366166987 hasAuthorship W4366166987A5083037168 @default.
- W4366166987 hasConcept C111919701 @default.
- W4366166987 hasConcept C119857082 @default.
- W4366166987 hasConcept C124101348 @default.
- W4366166987 hasConcept C138885662 @default.
- W4366166987 hasConcept C148483581 @default.
- W4366166987 hasConcept C151876577 @default.
- W4366166987 hasConcept C152124472 @default.
- W4366166987 hasConcept C153180895 @default.
- W4366166987 hasConcept C154945302 @default.
- W4366166987 hasConcept C2776401178 @default.
- W4366166987 hasConcept C41008148 @default.
- W4366166987 hasConcept C41895202 @default.
- W4366166987 hasConcept C70518039 @default.
- W4366166987 hasConcept C81917197 @default.
- W4366166987 hasConceptScore W4366166987C111919701 @default.
- W4366166987 hasConceptScore W4366166987C119857082 @default.
- W4366166987 hasConceptScore W4366166987C124101348 @default.
- W4366166987 hasConceptScore W4366166987C138885662 @default.
- W4366166987 hasConceptScore W4366166987C148483581 @default.
- W4366166987 hasConceptScore W4366166987C151876577 @default.
- W4366166987 hasConceptScore W4366166987C152124472 @default.
- W4366166987 hasConceptScore W4366166987C153180895 @default.
- W4366166987 hasConceptScore W4366166987C154945302 @default.
- W4366166987 hasConceptScore W4366166987C2776401178 @default.
- W4366166987 hasConceptScore W4366166987C41008148 @default.
- W4366166987 hasConceptScore W4366166987C41895202 @default.
- W4366166987 hasConceptScore W4366166987C70518039 @default.
- W4366166987 hasConceptScore W4366166987C81917197 @default.
- W4366166987 hasLocation W43661669871 @default.
- W4366166987 hasOpenAccess W4366166987 @default.
- W4366166987 hasPrimaryLocation W43661669871 @default.
- W4366166987 hasRelatedWork W1505313971 @default.
- W4366166987 hasRelatedWork W1965771882 @default.
- W4366166987 hasRelatedWork W2286904880 @default.
- W4366166987 hasRelatedWork W2376454898 @default.
- W4366166987 hasRelatedWork W2384303144 @default.
- W4366166987 hasRelatedWork W2385233088 @default.
- W4366166987 hasRelatedWork W2540349324 @default.
- W4366166987 hasRelatedWork W3011145085 @default.
- W4366166987 hasRelatedWork W3149253111 @default.
- W4366166987 hasRelatedWork W4377081939 @default.
- W4366166987 hasVolume "237" @default.
- W4366166987 isParatext "false" @default.
- W4366166987 isRetracted "false" @default.
- W4366166987 workType "article" @default.