Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366168958> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4366168958 endingPage "118943" @default.
- W4366168958 startingPage "118943" @default.
- W4366168958 abstract "News recommendation systems represent a critical solution to the problem of information overload, as they can suggest news that may be of interest to a particular user. Traditional recommendation systems require the collection of private information, which can lead to serious privacy concerns. Federated learning is a privacy-preserving framework that allows multiple users to train a global model without sharing their private data. In federated learning, users keep their private data locally and calculate the local gradients. In recommendation systems, however, the situation is the opposite, as users need to share their preferences with the server. Notably, user preferences are highly relevant to user privacy. The difference between recommendation systems and federated learning may lead to user privacy leakage. Accordingly, in this paper, we propose RD-FedRec, which follows a paradigm commonly used in real-world recommendation systems. First, we propose a randomized decomposition method to protect the privacy of user preferences, which has good compatibility and can preserve the privacy of recommendation results. Second, to improve recommendation efficiency, we introduce a recall phase that roughly filters news, thereby reducing the time overhead of the ranking phase. We implement RD-FedRec and evaluate its performance on two real-world datasets. Experimental results show that the accuracy and efficiency of RD-FedRec are comparable to state-of-the-art recommendation systems that do not provide privacy guarantees, and moreover that our proposed randomized decomposition method is compatible with most recommendation systems." @default.
- W4366168958 created "2023-04-19" @default.
- W4366168958 creator A5032664581 @default.
- W4366168958 creator A5040647242 @default.
- W4366168958 creator A5057427094 @default.
- W4366168958 creator A5059703876 @default.
- W4366168958 creator A5089418120 @default.
- W4366168958 date "2023-08-01" @default.
- W4366168958 modified "2023-10-14" @default.
- W4366168958 title "Randomization is all you need: A privacy-preserving federated learning framework for news recommendation" @default.
- W4366168958 cites W2072750586 @default.
- W4366168958 cites W3047789363 @default.
- W4366168958 cites W3145363636 @default.
- W4366168958 cites W3185162399 @default.
- W4366168958 doi "https://doi.org/10.1016/j.ins.2023.118943" @default.
- W4366168958 hasPublicationYear "2023" @default.
- W4366168958 type Work @default.
- W4366168958 citedByCount "0" @default.
- W4366168958 crossrefType "journal-article" @default.
- W4366168958 hasAuthorship W4366168958A5032664581 @default.
- W4366168958 hasAuthorship W4366168958A5040647242 @default.
- W4366168958 hasAuthorship W4366168958A5057427094 @default.
- W4366168958 hasAuthorship W4366168958A5059703876 @default.
- W4366168958 hasAuthorship W4366168958A5089418120 @default.
- W4366168958 hasConcept C108827166 @default.
- W4366168958 hasConcept C123201435 @default.
- W4366168958 hasConcept C136764020 @default.
- W4366168958 hasConcept C186625053 @default.
- W4366168958 hasConcept C189430467 @default.
- W4366168958 hasConcept C21569690 @default.
- W4366168958 hasConcept C23123220 @default.
- W4366168958 hasConcept C38652104 @default.
- W4366168958 hasConcept C41008148 @default.
- W4366168958 hasConcept C557471498 @default.
- W4366168958 hasConcept C81669768 @default.
- W4366168958 hasConcept C99221444 @default.
- W4366168958 hasConceptScore W4366168958C108827166 @default.
- W4366168958 hasConceptScore W4366168958C123201435 @default.
- W4366168958 hasConceptScore W4366168958C136764020 @default.
- W4366168958 hasConceptScore W4366168958C186625053 @default.
- W4366168958 hasConceptScore W4366168958C189430467 @default.
- W4366168958 hasConceptScore W4366168958C21569690 @default.
- W4366168958 hasConceptScore W4366168958C23123220 @default.
- W4366168958 hasConceptScore W4366168958C38652104 @default.
- W4366168958 hasConceptScore W4366168958C41008148 @default.
- W4366168958 hasConceptScore W4366168958C557471498 @default.
- W4366168958 hasConceptScore W4366168958C81669768 @default.
- W4366168958 hasConceptScore W4366168958C99221444 @default.
- W4366168958 hasFunder F4320321001 @default.
- W4366168958 hasFunder F4320322843 @default.
- W4366168958 hasFunder F4320324150 @default.
- W4366168958 hasFunder F4320335777 @default.
- W4366168958 hasLocation W43661689581 @default.
- W4366168958 hasOpenAccess W4366168958 @default.
- W4366168958 hasPrimaryLocation W43661689581 @default.
- W4366168958 hasRelatedWork W2100359483 @default.
- W4366168958 hasRelatedWork W2167225238 @default.
- W4366168958 hasRelatedWork W2205442635 @default.
- W4366168958 hasRelatedWork W2906884792 @default.
- W4366168958 hasRelatedWork W2944402528 @default.
- W4366168958 hasRelatedWork W2983582411 @default.
- W4366168958 hasRelatedWork W4246269187 @default.
- W4366168958 hasRelatedWork W4250207198 @default.
- W4366168958 hasRelatedWork W7602594 @default.
- W4366168958 hasRelatedWork W803966939 @default.
- W4366168958 hasVolume "637" @default.
- W4366168958 isParatext "false" @default.
- W4366168958 isRetracted "false" @default.
- W4366168958 workType "article" @default.