Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366176908> ?p ?o ?g. }
- W4366176908 endingPage "264" @default.
- W4366176908 startingPage "254" @default.
- W4366176908 abstract "Abstract Aims The black box nature of artificial intelligence (AI) hinders the development of interpretable AI models that are applicable in clinical practice. We aimed to develop an AI model for classifying patients of reduced left ventricular ejection fraction (LVEF) from 12-lead electrocardiograms (ECG) with the decision-interpretability. Methods and results We acquired paired ECG and echocardiography datasets from the central and co-operative institutions. For the central institution dataset, a random forest model was trained to identify patients with reduced LVEF among 29 907 ECGs. Shapley additive explanations were applied to 7196 ECGs. To extract the model’s decision criteria, the calculated Shapley additive explanations values were clustered for 192 non-paced rhythm patients in which reduced LVEF was predicted. Although the extracted criteria were different for each cluster, these criteria generally comprised a combination of six ECG findings: negative T-wave inversion in I/V5–6 leads, low voltage in I/II/V4–6 leads, Q wave in V3–6 leads, ventricular activation time prolongation in I/V5–6 leads, S-wave prolongation in V2–3 leads, and corrected QT interval prolongation. Similarly, for the co-operative institution dataset, the extracted criteria comprised a combination of the same six ECG findings. Furthermore, the accuracy of seven cardiologists’ ECG readings improved significantly after watching a video explaining the interpretation of these criteria (before, 62.9% ± 3.9% vs. after, 73.9% ± 2.4%; P = 0.02). Conclusion We visually interpreted the model’s decision criteria to evaluate its validity, thereby developing a model that provided the decision-interpretability required for clinical application." @default.
- W4366176908 created "2023-04-19" @default.
- W4366176908 creator A5003165755 @default.
- W4366176908 creator A5019110883 @default.
- W4366176908 creator A5027791632 @default.
- W4366176908 creator A5028895701 @default.
- W4366176908 creator A5036145018 @default.
- W4366176908 creator A5044637416 @default.
- W4366176908 creator A5046013878 @default.
- W4366176908 creator A5047611581 @default.
- W4366176908 creator A5048513868 @default.
- W4366176908 creator A5050954941 @default.
- W4366176908 creator A5056225926 @default.
- W4366176908 creator A5056457660 @default.
- W4366176908 creator A5066658224 @default.
- W4366176908 date "2023-04-17" @default.
- W4366176908 modified "2023-10-03" @default.
- W4366176908 title "An explainable artificial intelligence-enabled electrocardiogram analysis model for the classification of reduced left ventricular function" @default.
- W4366176908 cites W1964940342 @default.
- W4366176908 cites W1967212412 @default.
- W4366176908 cites W1998619885 @default.
- W4366176908 cites W2115350032 @default.
- W4366176908 cites W2124624517 @default.
- W4366176908 cites W2155982020 @default.
- W4366176908 cites W2295124130 @default.
- W4366176908 cites W2498119267 @default.
- W4366176908 cites W2557738935 @default.
- W4366176908 cites W2581082771 @default.
- W4366176908 cites W2617320279 @default.
- W4366176908 cites W2748892655 @default.
- W4366176908 cites W2901226889 @default.
- W4366176908 cites W2901743512 @default.
- W4366176908 cites W2911964244 @default.
- W4366176908 cites W2927351257 @default.
- W4366176908 cites W2974726644 @default.
- W4366176908 cites W3004868960 @default.
- W4366176908 cites W3013112475 @default.
- W4366176908 cites W3023933473 @default.
- W4366176908 cites W3134818558 @default.
- W4366176908 cites W3174752098 @default.
- W4366176908 cites W3185122822 @default.
- W4366176908 cites W3209901185 @default.
- W4366176908 cites W3216861964 @default.
- W4366176908 cites W4226191948 @default.
- W4366176908 doi "https://doi.org/10.1093/ehjdh/ztad027" @default.
- W4366176908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37265859" @default.
- W4366176908 hasPublicationYear "2023" @default.
- W4366176908 type Work @default.
- W4366176908 citedByCount "0" @default.
- W4366176908 crossrefType "journal-article" @default.
- W4366176908 hasAuthorship W4366176908A5003165755 @default.
- W4366176908 hasAuthorship W4366176908A5019110883 @default.
- W4366176908 hasAuthorship W4366176908A5027791632 @default.
- W4366176908 hasAuthorship W4366176908A5028895701 @default.
- W4366176908 hasAuthorship W4366176908A5036145018 @default.
- W4366176908 hasAuthorship W4366176908A5044637416 @default.
- W4366176908 hasAuthorship W4366176908A5046013878 @default.
- W4366176908 hasAuthorship W4366176908A5047611581 @default.
- W4366176908 hasAuthorship W4366176908A5048513868 @default.
- W4366176908 hasAuthorship W4366176908A5050954941 @default.
- W4366176908 hasAuthorship W4366176908A5056225926 @default.
- W4366176908 hasAuthorship W4366176908A5056457660 @default.
- W4366176908 hasAuthorship W4366176908A5066658224 @default.
- W4366176908 hasBestOaLocation W43661769081 @default.
- W4366176908 hasConcept C118441451 @default.
- W4366176908 hasConcept C119857082 @default.
- W4366176908 hasConcept C126322002 @default.
- W4366176908 hasConcept C154945302 @default.
- W4366176908 hasConcept C164705383 @default.
- W4366176908 hasConcept C1862650 @default.
- W4366176908 hasConcept C2778198053 @default.
- W4366176908 hasConcept C2779974597 @default.
- W4366176908 hasConcept C2780040984 @default.
- W4366176908 hasConcept C2781067378 @default.
- W4366176908 hasConcept C2993376042 @default.
- W4366176908 hasConcept C41008148 @default.
- W4366176908 hasConcept C71924100 @default.
- W4366176908 hasConcept C78085059 @default.
- W4366176908 hasConceptScore W4366176908C118441451 @default.
- W4366176908 hasConceptScore W4366176908C119857082 @default.
- W4366176908 hasConceptScore W4366176908C126322002 @default.
- W4366176908 hasConceptScore W4366176908C154945302 @default.
- W4366176908 hasConceptScore W4366176908C164705383 @default.
- W4366176908 hasConceptScore W4366176908C1862650 @default.
- W4366176908 hasConceptScore W4366176908C2778198053 @default.
- W4366176908 hasConceptScore W4366176908C2779974597 @default.
- W4366176908 hasConceptScore W4366176908C2780040984 @default.
- W4366176908 hasConceptScore W4366176908C2781067378 @default.
- W4366176908 hasConceptScore W4366176908C2993376042 @default.
- W4366176908 hasConceptScore W4366176908C41008148 @default.
- W4366176908 hasConceptScore W4366176908C71924100 @default.
- W4366176908 hasConceptScore W4366176908C78085059 @default.
- W4366176908 hasFunder F4320311405 @default.
- W4366176908 hasIssue "3" @default.
- W4366176908 hasLocation W43661769081 @default.
- W4366176908 hasLocation W43661769082 @default.
- W4366176908 hasLocation W43661769083 @default.
- W4366176908 hasOpenAccess W4366176908 @default.