Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366180265> ?p ?o ?g. }
- W4366180265 endingPage "5022" @default.
- W4366180265 startingPage "5022" @default.
- W4366180265 abstract "Woven fabric composite structures are applied in a wide range of industrial applications. Composite structures are vulnerable to damage from working in complex conditions and environments, which threatens the safety of the in-service structure. Damage detection based on Lamb waves is one of the most promising structural health monitoring (SHM) techniques for composite materials. In this paper, based on guided Lamb waves, a lightweight deep-learning approach is proposed for identifying damaged regions in woven fabric composite structures. The designed deep neural networks are built using group convolution and depthwise separated convolution, which can reduce the parameters considerably. The input of this model is a multi-channel matrix transformed by a one-dimensional guided wave signal. In addition, channel shuffling is introduced to increase the interaction between features, and a multi-head self-attention module is designed to increase the model’s global modeling capabilities. The relevant experimental results show that the proposed SHM approach can achieve a recognition accuracy of 100% after only eight epochs of training, and the proposed LCANet has only 4.10% of the parameters of contrastive SHM methods, which further validates the effectiveness and reliability of the proposed method." @default.
- W4366180265 created "2023-04-19" @default.
- W4366180265 creator A5029718012 @default.
- W4366180265 creator A5041918327 @default.
- W4366180265 creator A5058392835 @default.
- W4366180265 creator A5067099360 @default.
- W4366180265 creator A5068927949 @default.
- W4366180265 creator A5075996644 @default.
- W4366180265 creator A5078633718 @default.
- W4366180265 creator A5081133554 @default.
- W4366180265 date "2023-04-17" @default.
- W4366180265 modified "2023-10-17" @default.
- W4366180265 title "An Efficient Lightweight Deep-Learning Approach for Guided Lamb Wave-Based Damage Detection in Composite Structures" @default.
- W4366180265 cites W1997143387 @default.
- W4366180265 cites W2000954165 @default.
- W4366180265 cites W2027943928 @default.
- W4366180265 cites W2034595348 @default.
- W4366180265 cites W2143515353 @default.
- W4366180265 cites W2403419278 @default.
- W4366180265 cites W2523666788 @default.
- W4366180265 cites W2912256126 @default.
- W4366180265 cites W2961044345 @default.
- W4366180265 cites W3010576289 @default.
- W4366180265 cites W3021284771 @default.
- W4366180265 cites W3045439457 @default.
- W4366180265 cites W3058107537 @default.
- W4366180265 cites W3126594837 @default.
- W4366180265 cites W3170466253 @default.
- W4366180265 cites W3171143725 @default.
- W4366180265 cites W3193545702 @default.
- W4366180265 cites W3195010849 @default.
- W4366180265 cites W3201100220 @default.
- W4366180265 cites W3203148953 @default.
- W4366180265 cites W3209124788 @default.
- W4366180265 cites W3214396588 @default.
- W4366180265 cites W4200584085 @default.
- W4366180265 cites W4223567372 @default.
- W4366180265 cites W4281393376 @default.
- W4366180265 cites W4281844296 @default.
- W4366180265 cites W4284965894 @default.
- W4366180265 cites W4285404487 @default.
- W4366180265 cites W4296907462 @default.
- W4366180265 cites W4298148254 @default.
- W4366180265 cites W4305057267 @default.
- W4366180265 cites W4307363882 @default.
- W4366180265 cites W4311176571 @default.
- W4366180265 doi "https://doi.org/10.3390/app13085022" @default.
- W4366180265 hasPublicationYear "2023" @default.
- W4366180265 type Work @default.
- W4366180265 citedByCount "0" @default.
- W4366180265 crossrefType "journal-article" @default.
- W4366180265 hasAuthorship W4366180265A5029718012 @default.
- W4366180265 hasAuthorship W4366180265A5041918327 @default.
- W4366180265 hasAuthorship W4366180265A5058392835 @default.
- W4366180265 hasAuthorship W4366180265A5067099360 @default.
- W4366180265 hasAuthorship W4366180265A5068927949 @default.
- W4366180265 hasAuthorship W4366180265A5075996644 @default.
- W4366180265 hasAuthorship W4366180265A5078633718 @default.
- W4366180265 hasAuthorship W4366180265A5081133554 @default.
- W4366180265 hasBestOaLocation W43661802651 @default.
- W4366180265 hasConcept C104779481 @default.
- W4366180265 hasConcept C11413529 @default.
- W4366180265 hasConcept C121332964 @default.
- W4366180265 hasConcept C127413603 @default.
- W4366180265 hasConcept C142358356 @default.
- W4366180265 hasConcept C153180895 @default.
- W4366180265 hasConcept C154945302 @default.
- W4366180265 hasConcept C163258240 @default.
- W4366180265 hasConcept C24890656 @default.
- W4366180265 hasConcept C2776247918 @default.
- W4366180265 hasConcept C41008148 @default.
- W4366180265 hasConcept C43214815 @default.
- W4366180265 hasConcept C45347329 @default.
- W4366180265 hasConcept C50644808 @default.
- W4366180265 hasConcept C62520636 @default.
- W4366180265 hasConcept C66938386 @default.
- W4366180265 hasConcept C76155785 @default.
- W4366180265 hasConcept C84174578 @default.
- W4366180265 hasConceptScore W4366180265C104779481 @default.
- W4366180265 hasConceptScore W4366180265C11413529 @default.
- W4366180265 hasConceptScore W4366180265C121332964 @default.
- W4366180265 hasConceptScore W4366180265C127413603 @default.
- W4366180265 hasConceptScore W4366180265C142358356 @default.
- W4366180265 hasConceptScore W4366180265C153180895 @default.
- W4366180265 hasConceptScore W4366180265C154945302 @default.
- W4366180265 hasConceptScore W4366180265C163258240 @default.
- W4366180265 hasConceptScore W4366180265C24890656 @default.
- W4366180265 hasConceptScore W4366180265C2776247918 @default.
- W4366180265 hasConceptScore W4366180265C41008148 @default.
- W4366180265 hasConceptScore W4366180265C43214815 @default.
- W4366180265 hasConceptScore W4366180265C45347329 @default.
- W4366180265 hasConceptScore W4366180265C50644808 @default.
- W4366180265 hasConceptScore W4366180265C62520636 @default.
- W4366180265 hasConceptScore W4366180265C66938386 @default.
- W4366180265 hasConceptScore W4366180265C76155785 @default.
- W4366180265 hasConceptScore W4366180265C84174578 @default.
- W4366180265 hasFunder F4320321001 @default.
- W4366180265 hasFunder F4320321543 @default.