Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366180295> ?p ?o ?g. }
- W4366180295 endingPage "5020" @default.
- W4366180295 startingPage "5020" @default.
- W4366180295 abstract "Image captioning is the task of automatically generating a description of an image. Traditional image captioning models tend to generate a sentence describing the most conspicuous objects, but fail to describe a desired region or object as human. In order to generate sentences based on a given target, understanding the relationships between particular objects and describing them accurately is central to this task. In detail, information-augmented embedding is used to add prior information to each object, and a new Multi-Relational Weighted Graph Convolutional Network (MR-WGCN) is designed for fusing the information of adjacent objects. Then, a dynamic attention decoder module selectively focuses on particular objects or semantic contents. Finally, the model is optimized by similarity loss. The experiment on MSCOCO Entities demonstrates that IANR obtains, to date, the best published CIDEr performance of 124.52% on the Karpathy test split. Extensive experiments and ablations on both the MSCOCO Entities and the Flickr30k Entities demonstrate the effectiveness of each module. Meanwhile, IANR achieves better accuracy and controllability than the state-of-the-art models under the widely used evaluation metric." @default.
- W4366180295 created "2023-04-19" @default.
- W4366180295 creator A5001318142 @default.
- W4366180295 creator A5003253621 @default.
- W4366180295 creator A5037866934 @default.
- W4366180295 creator A5046454314 @default.
- W4366180295 creator A5061443528 @default.
- W4366180295 creator A5066119228 @default.
- W4366180295 creator A5070399019 @default.
- W4366180295 creator A5076564474 @default.
- W4366180295 date "2023-04-17" @default.
- W4366180295 modified "2023-10-18" @default.
- W4366180295 title "Controllable Image Captioning with Feature Refinement and Multilayer Fusion" @default.
- W4366180295 cites W1773149199 @default.
- W4366180295 cites W1895577753 @default.
- W4366180295 cites W1956340063 @default.
- W4366180295 cites W1973321600 @default.
- W4366180295 cites W2101105183 @default.
- W4366180295 cites W2194775991 @default.
- W4366180295 cites W2296385829 @default.
- W4366180295 cites W2506483933 @default.
- W4366180295 cites W2550553598 @default.
- W4366180295 cites W2604178507 @default.
- W4366180295 cites W2604314403 @default.
- W4366180295 cites W2625940279 @default.
- W4366180295 cites W2745461083 @default.
- W4366180295 cites W2901988662 @default.
- W4366180295 cites W2949376505 @default.
- W4366180295 cites W2954841306 @default.
- W4366180295 cites W2955956881 @default.
- W4366180295 cites W2963062932 @default.
- W4366180295 cites W2963084599 @default.
- W4366180295 cites W2963101956 @default.
- W4366180295 cites W2963170456 @default.
- W4366180295 cites W2963267809 @default.
- W4366180295 cites W2963536419 @default.
- W4366180295 cites W2963758027 @default.
- W4366180295 cites W2972897806 @default.
- W4366180295 cites W2982260276 @default.
- W4366180295 cites W2982553922 @default.
- W4366180295 cites W2986670728 @default.
- W4366180295 cites W2988793532 @default.
- W4366180295 cites W2988981892 @default.
- W4366180295 cites W3034655362 @default.
- W4366180295 cites W3034733309 @default.
- W4366180295 cites W3034984754 @default.
- W4366180295 cites W3035532688 @default.
- W4366180295 cites W3103651098 @default.
- W4366180295 cites W3107848485 @default.
- W4366180295 cites W3110019360 @default.
- W4366180295 cites W3170494780 @default.
- W4366180295 cites W3205625102 @default.
- W4366180295 cites W4206921498 @default.
- W4366180295 cites W4213019668 @default.
- W4366180295 cites W4213089501 @default.
- W4366180295 cites W4214819324 @default.
- W4366180295 cites W4294975862 @default.
- W4366180295 doi "https://doi.org/10.3390/app13085020" @default.
- W4366180295 hasPublicationYear "2023" @default.
- W4366180295 type Work @default.
- W4366180295 citedByCount "0" @default.
- W4366180295 crossrefType "journal-article" @default.
- W4366180295 hasAuthorship W4366180295A5001318142 @default.
- W4366180295 hasAuthorship W4366180295A5003253621 @default.
- W4366180295 hasAuthorship W4366180295A5037866934 @default.
- W4366180295 hasAuthorship W4366180295A5046454314 @default.
- W4366180295 hasAuthorship W4366180295A5061443528 @default.
- W4366180295 hasAuthorship W4366180295A5066119228 @default.
- W4366180295 hasAuthorship W4366180295A5070399019 @default.
- W4366180295 hasAuthorship W4366180295A5076564474 @default.
- W4366180295 hasBestOaLocation W43661802951 @default.
- W4366180295 hasConcept C115961682 @default.
- W4366180295 hasConcept C132525143 @default.
- W4366180295 hasConcept C138885662 @default.
- W4366180295 hasConcept C153180895 @default.
- W4366180295 hasConcept C154945302 @default.
- W4366180295 hasConcept C157657479 @default.
- W4366180295 hasConcept C162324750 @default.
- W4366180295 hasConcept C179372163 @default.
- W4366180295 hasConcept C187736073 @default.
- W4366180295 hasConcept C204321447 @default.
- W4366180295 hasConcept C205711294 @default.
- W4366180295 hasConcept C2776401178 @default.
- W4366180295 hasConcept C2777530160 @default.
- W4366180295 hasConcept C2780451532 @default.
- W4366180295 hasConcept C2781238097 @default.
- W4366180295 hasConcept C41008148 @default.
- W4366180295 hasConcept C41608201 @default.
- W4366180295 hasConcept C41895202 @default.
- W4366180295 hasConcept C80444323 @default.
- W4366180295 hasConceptScore W4366180295C115961682 @default.
- W4366180295 hasConceptScore W4366180295C132525143 @default.
- W4366180295 hasConceptScore W4366180295C138885662 @default.
- W4366180295 hasConceptScore W4366180295C153180895 @default.
- W4366180295 hasConceptScore W4366180295C154945302 @default.
- W4366180295 hasConceptScore W4366180295C157657479 @default.
- W4366180295 hasConceptScore W4366180295C162324750 @default.
- W4366180295 hasConceptScore W4366180295C179372163 @default.