Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366184245> ?p ?o ?g. }
- W4366184245 endingPage "387" @default.
- W4366184245 startingPage "387" @default.
- W4366184245 abstract "This work focuses on solving and analyzing two-point fuzzy boundary value problems in the form of fractional ordinary differential equations (FFOBVPs) using a new version of the approximation analytical approach. FFOBVPs are useful in describing complex scientific phenomena that include heritable characteristics and uncertainty, and obtaining exact or close analytical solutions for these equations can be challenging, especially in the case of nonlinear problems. To address these difficulties, the optimal homotopy asymptotic method (OHAM) was studied and extended in a new form to solve FFOBVPs. The OHAM is known for its ability to solve both linear and nonlinear fractional models and provides a straightforward methodology that uses multiple convergence control parameters to optimally manage the convergence of approximate series solutions. The new form of the OHAM presented in this work incorporates the concepts of fuzzy sets theory and some fractional calculus principles to include fuzzy analysis in the method. The steps of fuzzification and defuzzification are used to transform the fuzzy problem into a crisp problem that can be solved using the OHAM. The method is demonstrated by solving and analyzing linear and nonlinear FFOBVPs at different values of fractional derivatives. The results obtained using the new form of the fuzzy OHAM are analyzed and compared to those found in the literature to demonstrate the method’s efficiency and high accuracy in the fuzzy domain. Overall, this work presents a feasible and efficient approach for solving FFOBVPs using a new form of the OHAM with fuzzy analysis." @default.
- W4366184245 created "2023-04-19" @default.
- W4366184245 creator A5010501525 @default.
- W4366184245 creator A5012285422 @default.
- W4366184245 creator A5020329604 @default.
- W4366184245 creator A5022481208 @default.
- W4366184245 creator A5042027272 @default.
- W4366184245 creator A5048901727 @default.
- W4366184245 creator A5050224380 @default.
- W4366184245 date "2023-04-17" @default.
- W4366184245 modified "2023-10-03" @default.
- W4366184245 title "Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics" @default.
- W4366184245 cites W1979594386 @default.
- W4366184245 cites W2022735946 @default.
- W4366184245 cites W2023767060 @default.
- W4366184245 cites W2052053422 @default.
- W4366184245 cites W2059348829 @default.
- W4366184245 cites W2062545274 @default.
- W4366184245 cites W2090231116 @default.
- W4366184245 cites W2107477112 @default.
- W4366184245 cites W2139809316 @default.
- W4366184245 cites W2169253851 @default.
- W4366184245 cites W2197571681 @default.
- W4366184245 cites W2226878772 @default.
- W4366184245 cites W2537373335 @default.
- W4366184245 cites W2605545968 @default.
- W4366184245 cites W2767786991 @default.
- W4366184245 cites W2906952659 @default.
- W4366184245 cites W2950342120 @default.
- W4366184245 cites W2989886588 @default.
- W4366184245 cites W2998780413 @default.
- W4366184245 cites W3004763498 @default.
- W4366184245 cites W3019538054 @default.
- W4366184245 cites W3021314105 @default.
- W4366184245 cites W3043531732 @default.
- W4366184245 cites W3088308840 @default.
- W4366184245 cites W3093529209 @default.
- W4366184245 cites W3100771127 @default.
- W4366184245 cites W3201076180 @default.
- W4366184245 cites W3206697775 @default.
- W4366184245 cites W4251663774 @default.
- W4366184245 cites W4313475119 @default.
- W4366184245 cites W4321788086 @default.
- W4366184245 doi "https://doi.org/10.3390/axioms12040387" @default.
- W4366184245 hasPublicationYear "2023" @default.
- W4366184245 type Work @default.
- W4366184245 citedByCount "0" @default.
- W4366184245 crossrefType "journal-article" @default.
- W4366184245 hasAuthorship W4366184245A5010501525 @default.
- W4366184245 hasAuthorship W4366184245A5012285422 @default.
- W4366184245 hasAuthorship W4366184245A5020329604 @default.
- W4366184245 hasAuthorship W4366184245A5022481208 @default.
- W4366184245 hasAuthorship W4366184245A5042027272 @default.
- W4366184245 hasAuthorship W4366184245A5048901727 @default.
- W4366184245 hasAuthorship W4366184245A5050224380 @default.
- W4366184245 hasBestOaLocation W43661842451 @default.
- W4366184245 hasConcept C121332964 @default.
- W4366184245 hasConcept C126255220 @default.
- W4366184245 hasConcept C134306372 @default.
- W4366184245 hasConcept C154945302 @default.
- W4366184245 hasConcept C158622935 @default.
- W4366184245 hasConcept C162324750 @default.
- W4366184245 hasConcept C170260401 @default.
- W4366184245 hasConcept C173636693 @default.
- W4366184245 hasConcept C182310444 @default.
- W4366184245 hasConcept C1883856 @default.
- W4366184245 hasConcept C202444582 @default.
- W4366184245 hasConcept C2777303404 @default.
- W4366184245 hasConcept C28826006 @default.
- W4366184245 hasConcept C33923547 @default.
- W4366184245 hasConcept C41008148 @default.
- W4366184245 hasConcept C42011625 @default.
- W4366184245 hasConcept C50522688 @default.
- W4366184245 hasConcept C51544822 @default.
- W4366184245 hasConcept C58166 @default.
- W4366184245 hasConcept C5961521 @default.
- W4366184245 hasConcept C62520636 @default.
- W4366184245 hasConcept C78045399 @default.
- W4366184245 hasConcept C93779851 @default.
- W4366184245 hasConceptScore W4366184245C121332964 @default.
- W4366184245 hasConceptScore W4366184245C126255220 @default.
- W4366184245 hasConceptScore W4366184245C134306372 @default.
- W4366184245 hasConceptScore W4366184245C154945302 @default.
- W4366184245 hasConceptScore W4366184245C158622935 @default.
- W4366184245 hasConceptScore W4366184245C162324750 @default.
- W4366184245 hasConceptScore W4366184245C170260401 @default.
- W4366184245 hasConceptScore W4366184245C173636693 @default.
- W4366184245 hasConceptScore W4366184245C182310444 @default.
- W4366184245 hasConceptScore W4366184245C1883856 @default.
- W4366184245 hasConceptScore W4366184245C202444582 @default.
- W4366184245 hasConceptScore W4366184245C2777303404 @default.
- W4366184245 hasConceptScore W4366184245C28826006 @default.
- W4366184245 hasConceptScore W4366184245C33923547 @default.
- W4366184245 hasConceptScore W4366184245C41008148 @default.
- W4366184245 hasConceptScore W4366184245C42011625 @default.
- W4366184245 hasConceptScore W4366184245C50522688 @default.
- W4366184245 hasConceptScore W4366184245C51544822 @default.
- W4366184245 hasConceptScore W4366184245C58166 @default.