Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366189076> ?p ?o ?g. }
- W4366189076 endingPage "3490" @default.
- W4366189076 startingPage "3490" @default.
- W4366189076 abstract "Autonomous vehicles in highway driving scenarios are expected to become a reality in the next few years. Decision-making and motion planning algorithms, which allow autonomous vehicles to predict and tackle unpredictable road traffic situations, play a crucial role. Indeed, finding the optimal driving decision in all the different driving scenarios is a challenging task due to the large and complex variability of highway traffic scenarios. In this context, the aim of this work is to design an effective hybrid two-layer path planning architecture that, by exploiting the powerful tools offered by the emerging Deep Reinforcement Learning (DRL) in combination with model-based approaches, lets the autonomous vehicles properly behave in different highway traffic conditions and, accordingly, to determine the lateral and longitudinal control commands. Specifically, the DRL-based high-level planner is responsible for training the vehicle to choose tactical behaviors according to the surrounding environment, while the low-level control converts these choices into the lateral and longitudinal vehicle control actions to be imposed through an optimization problem based on Nonlinear Model Predictive Control (NMPC) approach, thus enforcing continuous constraints. The effectiveness of the proposed hierarchical architecture is hence evaluated via an integrated vehicular platform that combines the MATLAB environment with the SUMO (Simulation of Urban MObility) traffic simulator. The exhaustive simulation analysis, carried out on different non-trivial highway traffic scenarios, confirms the capability of the proposed strategy in driving the autonomous vehicles in different traffic scenarios." @default.
- W4366189076 created "2023-04-19" @default.
- W4366189076 creator A5029500294 @default.
- W4366189076 creator A5039228760 @default.
- W4366189076 creator A5072166793 @default.
- W4366189076 creator A5091912819 @default.
- W4366189076 date "2023-04-17" @default.
- W4366189076 modified "2023-10-06" @default.
- W4366189076 title "A Hybrid Deep Reinforcement Learning and Optimal Control Architecture for Autonomous Highway Driving" @default.
- W4366189076 cites W1544016679 @default.
- W4366189076 cites W1968651586 @default.
- W4366189076 cites W2078891597 @default.
- W4366189076 cites W2406067508 @default.
- W4366189076 cites W2616635592 @default.
- W4366189076 cites W2799745602 @default.
- W4366189076 cites W2800741184 @default.
- W4366189076 cites W2810217655 @default.
- W4366189076 cites W2908022947 @default.
- W4366189076 cites W2908972399 @default.
- W4366189076 cites W2941647785 @default.
- W4366189076 cites W2948652605 @default.
- W4366189076 cites W2949856406 @default.
- W4366189076 cites W2963322416 @default.
- W4366189076 cites W2991448601 @default.
- W4366189076 cites W3003469579 @default.
- W4366189076 cites W3012502004 @default.
- W4366189076 cites W3015058102 @default.
- W4366189076 cites W3086911381 @default.
- W4366189076 cites W3092124468 @default.
- W4366189076 cites W3097267688 @default.
- W4366189076 cites W3102777717 @default.
- W4366189076 cites W3112856749 @default.
- W4366189076 cites W3119746519 @default.
- W4366189076 cites W3120870661 @default.
- W4366189076 cites W3129672086 @default.
- W4366189076 cites W3143567690 @default.
- W4366189076 cites W3158274639 @default.
- W4366189076 cites W3188110915 @default.
- W4366189076 cites W3194618524 @default.
- W4366189076 cites W3202375294 @default.
- W4366189076 cites W3208191353 @default.
- W4366189076 cites W3211345831 @default.
- W4366189076 cites W3212357731 @default.
- W4366189076 cites W32403112 @default.
- W4366189076 cites W4200386160 @default.
- W4366189076 cites W4200434356 @default.
- W4366189076 cites W4211081832 @default.
- W4366189076 cites W4221145424 @default.
- W4366189076 cites W4224220194 @default.
- W4366189076 cites W4226048440 @default.
- W4366189076 cites W4226063569 @default.
- W4366189076 cites W4285179475 @default.
- W4366189076 cites W4288064502 @default.
- W4366189076 cites W4294068709 @default.
- W4366189076 cites W4297200954 @default.
- W4366189076 cites W4313888547 @default.
- W4366189076 cites W4315783692 @default.
- W4366189076 doi "https://doi.org/10.3390/en16083490" @default.
- W4366189076 hasPublicationYear "2023" @default.
- W4366189076 type Work @default.
- W4366189076 citedByCount "3" @default.
- W4366189076 countsByYear W43661890762023 @default.
- W4366189076 crossrefType "journal-article" @default.
- W4366189076 hasAuthorship W4366189076A5029500294 @default.
- W4366189076 hasAuthorship W4366189076A5039228760 @default.
- W4366189076 hasAuthorship W4366189076A5072166793 @default.
- W4366189076 hasAuthorship W4366189076A5091912819 @default.
- W4366189076 hasBestOaLocation W43661890761 @default.
- W4366189076 hasConcept C123657996 @default.
- W4366189076 hasConcept C127413603 @default.
- W4366189076 hasConcept C133731056 @default.
- W4366189076 hasConcept C142362112 @default.
- W4366189076 hasConcept C151730666 @default.
- W4366189076 hasConcept C153349607 @default.
- W4366189076 hasConcept C154945302 @default.
- W4366189076 hasConcept C172205157 @default.
- W4366189076 hasConcept C201995342 @default.
- W4366189076 hasConcept C22212356 @default.
- W4366189076 hasConcept C2775924081 @default.
- W4366189076 hasConcept C2776999362 @default.
- W4366189076 hasConcept C2779343474 @default.
- W4366189076 hasConcept C2780451532 @default.
- W4366189076 hasConcept C41008148 @default.
- W4366189076 hasConcept C44154836 @default.
- W4366189076 hasConcept C81074085 @default.
- W4366189076 hasConcept C86803240 @default.
- W4366189076 hasConcept C90509273 @default.
- W4366189076 hasConcept C97541855 @default.
- W4366189076 hasConceptScore W4366189076C123657996 @default.
- W4366189076 hasConceptScore W4366189076C127413603 @default.
- W4366189076 hasConceptScore W4366189076C133731056 @default.
- W4366189076 hasConceptScore W4366189076C142362112 @default.
- W4366189076 hasConceptScore W4366189076C151730666 @default.
- W4366189076 hasConceptScore W4366189076C153349607 @default.
- W4366189076 hasConceptScore W4366189076C154945302 @default.
- W4366189076 hasConceptScore W4366189076C172205157 @default.
- W4366189076 hasConceptScore W4366189076C201995342 @default.
- W4366189076 hasConceptScore W4366189076C22212356 @default.