Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366197908> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4366197908 abstract "File fragment classification (FFC) on small chunks of memory is essential in memory forensics and Internet security. Existing methods mainly treat file fragments as 1d byte signals and utilize the captured inter-byte features for classification, while the bit information within bytes, i.e., intra-byte information, is seldom considered. This is inherently inapt for classifying variable-length coding files whose symbols are represented as the variable number of bits. Conversely, we propose Byte2Image, a novel data augmentation technique, to introduce the neglected intra-byte information into file fragments and re-treat them as 2d gray-scale images, which allows us to capture both inter-byte and intra-byte correlations simultaneously through powerful convolutional neural networks (CNNs). Specifically, to convert file fragments to 2d images, we employ a sliding byte window to expose the neglected intra-byte information and stack their n-gram features row by row. We further propose a byte sequence & image fusion network as a classifier, which can jointly model the raw 1d byte sequence and the converted 2d image to perform FFC. Experiments on FFT-75 dataset validate that our proposed method can achieve notable accuracy improvements over state-of-the-art methods in nearly all scenarios. The code will be released at https://github.com/wenyang001/Byte2Image." @default.
- W4366197908 created "2023-04-19" @default.
- W4366197908 creator A5022468480 @default.
- W4366197908 creator A5029667848 @default.
- W4366197908 creator A5044722301 @default.
- W4366197908 creator A5049290682 @default.
- W4366197908 creator A5089670361 @default.
- W4366197908 date "2023-04-14" @default.
- W4366197908 modified "2023-10-16" @default.
- W4366197908 title "A Byte Sequence is Worth an Image: CNN for File Fragment Classification Using Bit Shift and n-Gram Embeddings" @default.
- W4366197908 doi "https://doi.org/10.48550/arxiv.2304.06983" @default.
- W4366197908 hasPublicationYear "2023" @default.
- W4366197908 type Work @default.
- W4366197908 citedByCount "0" @default.
- W4366197908 crossrefType "posted-content" @default.
- W4366197908 hasAuthorship W4366197908A5022468480 @default.
- W4366197908 hasAuthorship W4366197908A5029667848 @default.
- W4366197908 hasAuthorship W4366197908A5044722301 @default.
- W4366197908 hasAuthorship W4366197908A5049290682 @default.
- W4366197908 hasAuthorship W4366197908A5089670361 @default.
- W4366197908 hasBestOaLocation W43661979081 @default.
- W4366197908 hasConcept C117884012 @default.
- W4366197908 hasConcept C137293760 @default.
- W4366197908 hasConcept C154945302 @default.
- W4366197908 hasConcept C41008148 @default.
- W4366197908 hasConcept C43364308 @default.
- W4366197908 hasConcept C9390403 @default.
- W4366197908 hasConceptScore W4366197908C117884012 @default.
- W4366197908 hasConceptScore W4366197908C137293760 @default.
- W4366197908 hasConceptScore W4366197908C154945302 @default.
- W4366197908 hasConceptScore W4366197908C41008148 @default.
- W4366197908 hasConceptScore W4366197908C43364308 @default.
- W4366197908 hasConceptScore W4366197908C9390403 @default.
- W4366197908 hasLocation W43661979081 @default.
- W4366197908 hasOpenAccess W4366197908 @default.
- W4366197908 hasPrimaryLocation W43661979081 @default.
- W4366197908 hasRelatedWork W2080007423 @default.
- W4366197908 hasRelatedWork W2149248898 @default.
- W4366197908 hasRelatedWork W2348304663 @default.
- W4366197908 hasRelatedWork W2518866423 @default.
- W4366197908 hasRelatedWork W2959686711 @default.
- W4366197908 hasRelatedWork W3033292598 @default.
- W4366197908 hasRelatedWork W3084996942 @default.
- W4366197908 hasRelatedWork W3107474891 @default.
- W4366197908 hasRelatedWork W4236683910 @default.
- W4366197908 hasRelatedWork W4318194836 @default.
- W4366197908 isParatext "false" @default.
- W4366197908 isRetracted "false" @default.
- W4366197908 workType "article" @default.