Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366198760> ?p ?o ?g. }
- W4366198760 endingPage "14" @default.
- W4366198760 startingPage "1" @default.
- W4366198760 abstract "In the era of advancement in information technology and the smart healthcare industry 5.0, the diagnosis of human diseases is still a challenging task. The accurate prediction of human diseases, especially deadly cancer diseases in the smart healthcare industry 5.0, is of utmost importance for human wellbeing. In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a dizzying pace, from a small wristwatch to a big aircraft. With this advancement in the healthcare industry, there also rises the issue of data privacy. To ensure the privacy of patients’ data and fast data transmission, federated deep extreme learning entangled with the edge computing approach is considered in this proposed intelligent system for the diagnosis of lung disease. Federated deep extreme machine learning is applied for the prediction of lung disease in the proposed intelligent system. Furthermore, to strengthen the proposed model, a fused weighted deep extreme machine learning methodology is adopted for better prediction of lung disease. The MATLAB 2020a tool is used for simulation and results. The proposed fused weighted federated deep extreme machine learning model is used for the validation of the best prediction of cancer disease in the smart healthcare industry 5.0. The result of the proposed fused weighted federated deep extreme machine learning approach achieved 97.2%, which is better than the state-of-the-art published methods." @default.
- W4366198760 created "2023-04-19" @default.
- W4366198760 creator A5003118033 @default.
- W4366198760 creator A5003673584 @default.
- W4366198760 creator A5007292153 @default.
- W4366198760 creator A5016051364 @default.
- W4366198760 creator A5021305119 @default.
- W4366198760 creator A5037528486 @default.
- W4366198760 creator A5044552714 @default.
- W4366198760 creator A5056873670 @default.
- W4366198760 date "2023-04-17" @default.
- W4366198760 modified "2023-09-23" @default.
- W4366198760 title "Fused Weighted Federated Deep Extreme Machine Learning Based on Intelligent Lung Cancer Disease Prediction Model for Healthcare 5.0" @default.
- W4366198760 cites W2783522756 @default.
- W4366198760 cites W2795396960 @default.
- W4366198760 cites W2889646458 @default.
- W4366198760 cites W2904773330 @default.
- W4366198760 cites W2910963184 @default.
- W4366198760 cites W2913739661 @default.
- W4366198760 cites W2924836084 @default.
- W4366198760 cites W2943723778 @default.
- W4366198760 cites W2945759189 @default.
- W4366198760 cites W2963092133 @default.
- W4366198760 cites W2964474528 @default.
- W4366198760 cites W2983509244 @default.
- W4366198760 cites W3007556402 @default.
- W4366198760 cites W3010852232 @default.
- W4366198760 cites W3039753000 @default.
- W4366198760 cites W3081883107 @default.
- W4366198760 cites W3092194426 @default.
- W4366198760 cites W3109256480 @default.
- W4366198760 cites W3127299377 @default.
- W4366198760 cites W3130714454 @default.
- W4366198760 cites W3136945043 @default.
- W4366198760 cites W3139312002 @default.
- W4366198760 cites W3141072087 @default.
- W4366198760 cites W3192909153 @default.
- W4366198760 cites W3193630181 @default.
- W4366198760 cites W3199136933 @default.
- W4366198760 cites W3208020934 @default.
- W4366198760 cites W3211080667 @default.
- W4366198760 cites W4206627303 @default.
- W4366198760 cites W4211119275 @default.
- W4366198760 cites W4212858816 @default.
- W4366198760 cites W4214767762 @default.
- W4366198760 cites W4296990089 @default.
- W4366198760 cites W4313459187 @default.
- W4366198760 cites W4313554955 @default.
- W4366198760 cites W4315778743 @default.
- W4366198760 cites W4317425179 @default.
- W4366198760 doi "https://doi.org/10.1155/2023/2599161" @default.
- W4366198760 hasPublicationYear "2023" @default.
- W4366198760 type Work @default.
- W4366198760 citedByCount "2" @default.
- W4366198760 countsByYear W43661987602023 @default.
- W4366198760 crossrefType "journal-article" @default.
- W4366198760 hasAuthorship W4366198760A5003118033 @default.
- W4366198760 hasAuthorship W4366198760A5003673584 @default.
- W4366198760 hasAuthorship W4366198760A5007292153 @default.
- W4366198760 hasAuthorship W4366198760A5016051364 @default.
- W4366198760 hasAuthorship W4366198760A5021305119 @default.
- W4366198760 hasAuthorship W4366198760A5037528486 @default.
- W4366198760 hasAuthorship W4366198760A5044552714 @default.
- W4366198760 hasAuthorship W4366198760A5056873670 @default.
- W4366198760 hasBestOaLocation W43661987601 @default.
- W4366198760 hasConcept C108583219 @default.
- W4366198760 hasConcept C119857082 @default.
- W4366198760 hasConcept C124101348 @default.
- W4366198760 hasConcept C13280743 @default.
- W4366198760 hasConcept C154945302 @default.
- W4366198760 hasConcept C160735492 @default.
- W4366198760 hasConcept C162324750 @default.
- W4366198760 hasConcept C205649164 @default.
- W4366198760 hasConcept C2777526511 @default.
- W4366198760 hasConcept C2780150128 @default.
- W4366198760 hasConcept C41008148 @default.
- W4366198760 hasConcept C50522688 @default.
- W4366198760 hasConcept C50644808 @default.
- W4366198760 hasConcept C75684735 @default.
- W4366198760 hasConceptScore W4366198760C108583219 @default.
- W4366198760 hasConceptScore W4366198760C119857082 @default.
- W4366198760 hasConceptScore W4366198760C124101348 @default.
- W4366198760 hasConceptScore W4366198760C13280743 @default.
- W4366198760 hasConceptScore W4366198760C154945302 @default.
- W4366198760 hasConceptScore W4366198760C160735492 @default.
- W4366198760 hasConceptScore W4366198760C162324750 @default.
- W4366198760 hasConceptScore W4366198760C205649164 @default.
- W4366198760 hasConceptScore W4366198760C2777526511 @default.
- W4366198760 hasConceptScore W4366198760C2780150128 @default.
- W4366198760 hasConceptScore W4366198760C41008148 @default.
- W4366198760 hasConceptScore W4366198760C50522688 @default.
- W4366198760 hasConceptScore W4366198760C50644808 @default.
- W4366198760 hasConceptScore W4366198760C75684735 @default.
- W4366198760 hasFunder F4320322334 @default.
- W4366198760 hasLocation W43661987601 @default.
- W4366198760 hasOpenAccess W4366198760 @default.
- W4366198760 hasPrimaryLocation W43661987601 @default.
- W4366198760 hasRelatedWork W2795261237 @default.