Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366199810> ?p ?o ?g. }
- W4366199810 abstract "Continuous effort is dedicated to clinically and computationally discovering potential drugs for the novel coronavirus-2. Computer-Aided Drug Design CADD is the backbone of drug discovery, and shifting to computational approaches has become necessary. Quantitative Structure–Activity Relationship QSAR is a widely used approach in predicting the activity of potential molecules and is an early step in drug discovery. 3-chymotrypsin-like-proteinase 3CLpro is a highly conserved enzyme in the coronaviruses characterized by its role in the viral replication cycle. Despite the existence of various vaccines, the development of a new drug for SARS-CoV-2 is a necessity to provide cures to patients. In the pursuit of exploring new potential 3CLpro SARS-CoV-2 inhibitors and contributing to the existing literature, this work opted to build and compare three models of QSAR to correlate between the molecules’ structure and their activity: IC50 through the application of Multiple Linear Regression(MLR), Support Vector Regression(SVR), and Particle Swarm Optimization-SVR algorithms (PSO-SVR). The database contains 71 novel derivatives of ML300which have proven nanomolar activity against the 3CLpro enzyme, and the GA algorithm obtained the representative descriptors. The built models were plotted and compared following various internal and external validation criteria, and applicability domains for each model were determined. The results demonstrated that the PSO-SVR model performed best in predictive ability and robustness, followed by SVR and MLR. These results also suggest that the branching degree 6 had a strong negative impact, while the moment of inertia X/Z ratio, the fraction of rotatable bonds, autocorrelation ATSm2, Keirshape2, and weighted path of length 2 positively impacted the activity. These outcomes prove that the PSO-SVR model is robust and concrete and paves the way for its prediction abilities for future screening of more significant inhibitors' datasets." @default.
- W4366199810 created "2023-04-19" @default.
- W4366199810 creator A5044780230 @default.
- W4366199810 creator A5046667880 @default.
- W4366199810 creator A5065421418 @default.
- W4366199810 date "2023-04-18" @default.
- W4366199810 modified "2023-10-16" @default.
- W4366199810 title "In silico prediction of the inhibition of new molecules on SARS-CoV-2 3CL protease by using QSAR: PSOSVR approach" @default.
- W4366199810 cites W1584846110 @default.
- W4366199810 cites W1966851745 @default.
- W4366199810 cites W1971849220 @default.
- W4366199810 cites W1974778190 @default.
- W4366199810 cites W1981708439 @default.
- W4366199810 cites W1985274607 @default.
- W4366199810 cites W2009927598 @default.
- W4366199810 cites W2012060039 @default.
- W4366199810 cites W2039196793 @default.
- W4366199810 cites W2055855178 @default.
- W4366199810 cites W2090700201 @default.
- W4366199810 cites W2105649494 @default.
- W4366199810 cites W2116296021 @default.
- W4366199810 cites W2143373956 @default.
- W4366199810 cites W2195203261 @default.
- W4366199810 cites W2197008132 @default.
- W4366199810 cites W2267945123 @default.
- W4366199810 cites W2270330859 @default.
- W4366199810 cites W2304933537 @default.
- W4366199810 cites W2503169225 @default.
- W4366199810 cites W2536561253 @default.
- W4366199810 cites W2598515728 @default.
- W4366199810 cites W2754454025 @default.
- W4366199810 cites W2777542119 @default.
- W4366199810 cites W2796344493 @default.
- W4366199810 cites W2888072631 @default.
- W4366199810 cites W3008865298 @default.
- W4366199810 cites W3009678818 @default.
- W4366199810 cites W3012560938 @default.
- W4366199810 cites W3016143592 @default.
- W4366199810 cites W3022587927 @default.
- W4366199810 cites W3036899560 @default.
- W4366199810 cites W3040124377 @default.
- W4366199810 cites W3041333867 @default.
- W4366199810 cites W3081918364 @default.
- W4366199810 cites W3086832859 @default.
- W4366199810 cites W3087673974 @default.
- W4366199810 cites W3112565978 @default.
- W4366199810 cites W3116148010 @default.
- W4366199810 cites W3132721190 @default.
- W4366199810 cites W3135143508 @default.
- W4366199810 cites W3160713108 @default.
- W4366199810 cites W3160946652 @default.
- W4366199810 cites W3161209221 @default.
- W4366199810 cites W3164901331 @default.
- W4366199810 cites W3186714300 @default.
- W4366199810 cites W3187653469 @default.
- W4366199810 cites W3188746092 @default.
- W4366199810 cites W3193682976 @default.
- W4366199810 cites W3195288938 @default.
- W4366199810 cites W3199502517 @default.
- W4366199810 cites W3205227162 @default.
- W4366199810 cites W3207433012 @default.
- W4366199810 cites W3208680300 @default.
- W4366199810 cites W3216964149 @default.
- W4366199810 cites W410952460 @default.
- W4366199810 cites W4224984567 @default.
- W4366199810 cites W4283071258 @default.
- W4366199810 cites W922307485 @default.
- W4366199810 doi "https://doi.org/10.1007/s43153-023-00332-z" @default.
- W4366199810 hasPublicationYear "2023" @default.
- W4366199810 type Work @default.
- W4366199810 citedByCount "0" @default.
- W4366199810 crossrefType "journal-article" @default.
- W4366199810 hasAuthorship W4366199810A5044780230 @default.
- W4366199810 hasAuthorship W4366199810A5046667880 @default.
- W4366199810 hasAuthorship W4366199810A5065421418 @default.
- W4366199810 hasBestOaLocation W43661998101 @default.
- W4366199810 hasConcept C104317684 @default.
- W4366199810 hasConcept C119857082 @default.
- W4366199810 hasConcept C12267149 @default.
- W4366199810 hasConcept C154945302 @default.
- W4366199810 hasConcept C164126121 @default.
- W4366199810 hasConcept C185592680 @default.
- W4366199810 hasConcept C2775905019 @default.
- W4366199810 hasConcept C41008148 @default.
- W4366199810 hasConcept C55493867 @default.
- W4366199810 hasConcept C63479239 @default.
- W4366199810 hasConcept C70721500 @default.
- W4366199810 hasConcept C86803240 @default.
- W4366199810 hasConceptScore W4366199810C104317684 @default.
- W4366199810 hasConceptScore W4366199810C119857082 @default.
- W4366199810 hasConceptScore W4366199810C12267149 @default.
- W4366199810 hasConceptScore W4366199810C154945302 @default.
- W4366199810 hasConceptScore W4366199810C164126121 @default.
- W4366199810 hasConceptScore W4366199810C185592680 @default.
- W4366199810 hasConceptScore W4366199810C2775905019 @default.
- W4366199810 hasConceptScore W4366199810C41008148 @default.
- W4366199810 hasConceptScore W4366199810C55493867 @default.
- W4366199810 hasConceptScore W4366199810C63479239 @default.
- W4366199810 hasConceptScore W4366199810C70721500 @default.
- W4366199810 hasConceptScore W4366199810C86803240 @default.