Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366199946> ?p ?o ?g. }
- W4366199946 endingPage "16" @default.
- W4366199946 startingPage "1" @default.
- W4366199946 abstract "The game of chess is the most widely examined game in the field of artificial intelligence and machine learning. In this work, we propose a new method for obtaining the evaluation of a chess position without using tree search and examining each candidate move separately, like a chess engine does. Instead of exploring the search tree in order to look several moves ahead, we propose to use the much faster and less computationally demanding estimations of a properly trained neural network. Such an approach offers the benefit of having an estimation for the position evaluation in a matter of milliseconds, while the time needed by a chess engine may be several orders of magnitude longer. The proposed approach introduces models based on the radial basis function (RBF) neural network architecture trained with the fuzzy means algorithm, in conjunction with a novel set of input features; different methods of network training are also examined and compared, involving the multilayer perceptron (MLP) and convolutional neural network (CNN) architectures and a different set of input features. All methods were based upon a new dataset, which was developed in the context of this work, derived by a collection of over 1500 top-level chess games. A Java application was developed for processing the games and extracting certain features from the arising positions in order to construct the dataset, which contained data from over 80,000 positions. Various networks were trained and tested as we considered different variations of each method regarding input variable configurations and dataset filtering. Ultimately, the results indicated that the proposed approach was the best in performance. The models produced with the proposed approach are suitable for integration in model-based decision-making frameworks, e.g., model predictive control (MPC) schemes, which could form the basis for a fully-fledged chess-playing software." @default.
- W4366199946 created "2023-04-19" @default.
- W4366199946 creator A5001670334 @default.
- W4366199946 creator A5007654207 @default.
- W4366199946 creator A5014365396 @default.
- W4366199946 date "2023-04-17" @default.
- W4366199946 modified "2023-09-30" @default.
- W4366199946 title "Chess Position Evaluation Using Radial Basis Function Neural Networks" @default.
- W4366199946 cites W2038754808 @default.
- W4366199946 cites W2064599931 @default.
- W4366199946 cites W2079833164 @default.
- W4366199946 cites W2099001564 @default.
- W4366199946 cites W2107655753 @default.
- W4366199946 cites W2108141184 @default.
- W4366199946 cites W2139385677 @default.
- W4366199946 cites W2155482699 @default.
- W4366199946 cites W2510301586 @default.
- W4366199946 cites W2518535024 @default.
- W4366199946 cites W2766551453 @default.
- W4366199946 cites W2792286211 @default.
- W4366199946 cites W2876219570 @default.
- W4366199946 cites W2902907165 @default.
- W4366199946 cites W2911296969 @default.
- W4366199946 cites W2995760864 @default.
- W4366199946 cites W3004893673 @default.
- W4366199946 cites W3102118428 @default.
- W4366199946 cites W3201805859 @default.
- W4366199946 cites W4200308911 @default.
- W4366199946 cites W4214632917 @default.
- W4366199946 cites W4282557729 @default.
- W4366199946 cites W4282829047 @default.
- W4366199946 cites W4296474736 @default.
- W4366199946 doi "https://doi.org/10.1155/2023/7143943" @default.
- W4366199946 hasPublicationYear "2023" @default.
- W4366199946 type Work @default.
- W4366199946 citedByCount "0" @default.
- W4366199946 crossrefType "journal-article" @default.
- W4366199946 hasAuthorship W4366199946A5001670334 @default.
- W4366199946 hasAuthorship W4366199946A5007654207 @default.
- W4366199946 hasAuthorship W4366199946A5014365396 @default.
- W4366199946 hasBestOaLocation W43661999461 @default.
- W4366199946 hasConcept C10138342 @default.
- W4366199946 hasConcept C113174947 @default.
- W4366199946 hasConcept C119857082 @default.
- W4366199946 hasConcept C131806220 @default.
- W4366199946 hasConcept C134306372 @default.
- W4366199946 hasConcept C14036430 @default.
- W4366199946 hasConcept C151730666 @default.
- W4366199946 hasConcept C153180895 @default.
- W4366199946 hasConcept C154945302 @default.
- W4366199946 hasConcept C162324750 @default.
- W4366199946 hasConcept C177264268 @default.
- W4366199946 hasConcept C179717631 @default.
- W4366199946 hasConcept C198082294 @default.
- W4366199946 hasConcept C199360897 @default.
- W4366199946 hasConcept C2779343474 @default.
- W4366199946 hasConcept C33923547 @default.
- W4366199946 hasConcept C41008148 @default.
- W4366199946 hasConcept C50644808 @default.
- W4366199946 hasConcept C60908668 @default.
- W4366199946 hasConcept C78458016 @default.
- W4366199946 hasConcept C86803240 @default.
- W4366199946 hasConcept C98856871 @default.
- W4366199946 hasConceptScore W4366199946C10138342 @default.
- W4366199946 hasConceptScore W4366199946C113174947 @default.
- W4366199946 hasConceptScore W4366199946C119857082 @default.
- W4366199946 hasConceptScore W4366199946C131806220 @default.
- W4366199946 hasConceptScore W4366199946C134306372 @default.
- W4366199946 hasConceptScore W4366199946C14036430 @default.
- W4366199946 hasConceptScore W4366199946C151730666 @default.
- W4366199946 hasConceptScore W4366199946C153180895 @default.
- W4366199946 hasConceptScore W4366199946C154945302 @default.
- W4366199946 hasConceptScore W4366199946C162324750 @default.
- W4366199946 hasConceptScore W4366199946C177264268 @default.
- W4366199946 hasConceptScore W4366199946C179717631 @default.
- W4366199946 hasConceptScore W4366199946C198082294 @default.
- W4366199946 hasConceptScore W4366199946C199360897 @default.
- W4366199946 hasConceptScore W4366199946C2779343474 @default.
- W4366199946 hasConceptScore W4366199946C33923547 @default.
- W4366199946 hasConceptScore W4366199946C41008148 @default.
- W4366199946 hasConceptScore W4366199946C50644808 @default.
- W4366199946 hasConceptScore W4366199946C60908668 @default.
- W4366199946 hasConceptScore W4366199946C78458016 @default.
- W4366199946 hasConceptScore W4366199946C86803240 @default.
- W4366199946 hasConceptScore W4366199946C98856871 @default.
- W4366199946 hasFunder F4320338080 @default.
- W4366199946 hasLocation W43661999461 @default.
- W4366199946 hasOpenAccess W4366199946 @default.
- W4366199946 hasPrimaryLocation W43661999461 @default.
- W4366199946 hasRelatedWork W2338394561 @default.
- W4366199946 hasRelatedWork W2979979539 @default.
- W4366199946 hasRelatedWork W3106494386 @default.
- W4366199946 hasRelatedWork W3133467804 @default.
- W4366199946 hasRelatedWork W3185179407 @default.
- W4366199946 hasRelatedWork W4220975826 @default.
- W4366199946 hasRelatedWork W4231994957 @default.
- W4366199946 hasRelatedWork W4280611221 @default.
- W4366199946 hasRelatedWork W4316082230 @default.