Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366201247> ?p ?o ?g. }
- W4366201247 endingPage "19" @default.
- W4366201247 startingPage "1" @default.
- W4366201247 abstract "Bridge deformation response data are the basis for calculating the dynamic parameters of the bridge, and it is of great significance to accurately measure the deformation response of the bridge during the load test and service conditions. A bridge deformation measurement method using an unmanned aerial system (UAS) with dual cameras and a deep learning-based object tracking method is proposed to measure the bridge deformation. The contributions are as follows: (1) To address the problem that the movement of the UAS brings error to the deformation measurement results, dual cameras with telephoto and wide-angle lenses are used to simultaneously capture the deformed points and stable points on the bridge, so as to simultaneously measure the deformation of the bridge and the displacement of the UAS, and then the displacement of UAS is eliminated by using the homography relationship between the two cameras. (2) To solve the problem that the traditional digital image correlation-based displacement measurement method is easily disturbed by factors such as light changes and occlusion, a displacement calculation method based on object detection network and target tracking algorithm is proposed to achieve the stable target displacement measurement. Finally, the proposed method was verified in a laboratory test and applied to the deformation measurement of an in-service bridge to verify the practicability of the proposed method." @default.
- W4366201247 created "2023-04-19" @default.
- W4366201247 creator A5034383475 @default.
- W4366201247 creator A5041681554 @default.
- W4366201247 creator A5079306518 @default.
- W4366201247 date "2023-04-17" @default.
- W4366201247 modified "2023-10-17" @default.
- W4366201247 title "Bridge Deformation Measurement Using Unmanned Aerial Dual Camera and Learning-Based Tracking Method" @default.
- W4366201247 cites W1987324141 @default.
- W4366201247 cites W2031654445 @default.
- W4366201247 cites W2035934910 @default.
- W4366201247 cites W2095614026 @default.
- W4366201247 cites W2097649661 @default.
- W4366201247 cites W2160151838 @default.
- W4366201247 cites W22745672 @default.
- W4366201247 cites W2549940417 @default.
- W4366201247 cites W2598457882 @default.
- W4366201247 cites W2609626100 @default.
- W4366201247 cites W2616459075 @default.
- W4366201247 cites W2755658449 @default.
- W4366201247 cites W2768955070 @default.
- W4366201247 cites W2774494272 @default.
- W4366201247 cites W2779497038 @default.
- W4366201247 cites W2789290525 @default.
- W4366201247 cites W2795198781 @default.
- W4366201247 cites W2804948039 @default.
- W4366201247 cites W2811505159 @default.
- W4366201247 cites W2899144041 @default.
- W4366201247 cites W2912093940 @default.
- W4366201247 cites W2922073063 @default.
- W4366201247 cites W2949533892 @default.
- W4366201247 cites W2955325250 @default.
- W4366201247 cites W2979396152 @default.
- W4366201247 cites W2982770724 @default.
- W4366201247 cites W2989604896 @default.
- W4366201247 cites W2994408221 @default.
- W4366201247 cites W2996834926 @default.
- W4366201247 cites W3003852690 @default.
- W4366201247 cites W3015261975 @default.
- W4366201247 cites W3038116626 @default.
- W4366201247 cites W3043161578 @default.
- W4366201247 cites W3080145167 @default.
- W4366201247 cites W3096372554 @default.
- W4366201247 cites W3097453588 @default.
- W4366201247 cites W3106250896 @default.
- W4366201247 cites W3134684984 @default.
- W4366201247 cites W3157036939 @default.
- W4366201247 cites W3157529086 @default.
- W4366201247 cites W3167039722 @default.
- W4366201247 cites W3173732754 @default.
- W4366201247 cites W3178734692 @default.
- W4366201247 cites W3185681829 @default.
- W4366201247 cites W3186248524 @default.
- W4366201247 cites W3193609495 @default.
- W4366201247 cites W3200760211 @default.
- W4366201247 cites W3204295647 @default.
- W4366201247 cites W3205628281 @default.
- W4366201247 cites W3208289567 @default.
- W4366201247 cites W4200454273 @default.
- W4366201247 cites W4200478585 @default.
- W4366201247 cites W4211004100 @default.
- W4366201247 cites W4221023822 @default.
- W4366201247 cites W4224007840 @default.
- W4366201247 cites W4293052811 @default.
- W4366201247 cites W4299303451 @default.
- W4366201247 cites W639708223 @default.
- W4366201247 doi "https://doi.org/10.1155/2023/4752072" @default.
- W4366201247 hasPublicationYear "2023" @default.
- W4366201247 type Work @default.
- W4366201247 citedByCount "1" @default.
- W4366201247 countsByYear W43662012472023 @default.
- W4366201247 crossrefType "journal-article" @default.
- W4366201247 hasAuthorship W4366201247A5034383475 @default.
- W4366201247 hasAuthorship W4366201247A5041681554 @default.
- W4366201247 hasAuthorship W4366201247A5079306518 @default.
- W4366201247 hasBestOaLocation W43662012471 @default.
- W4366201247 hasConcept C100776233 @default.
- W4366201247 hasConcept C107551265 @default.
- W4366201247 hasConcept C111368507 @default.
- W4366201247 hasConcept C115635565 @default.
- W4366201247 hasConcept C120665830 @default.
- W4366201247 hasConcept C121332964 @default.
- W4366201247 hasConcept C126322002 @default.
- W4366201247 hasConcept C127313418 @default.
- W4366201247 hasConcept C136428324 @default.
- W4366201247 hasConcept C154945302 @default.
- W4366201247 hasConcept C15744967 @default.
- W4366201247 hasConcept C19417346 @default.
- W4366201247 hasConcept C204366326 @default.
- W4366201247 hasConcept C2775936607 @default.
- W4366201247 hasConcept C2780009758 @default.
- W4366201247 hasConcept C31972630 @default.
- W4366201247 hasConcept C41008148 @default.
- W4366201247 hasConcept C542102704 @default.
- W4366201247 hasConcept C71924100 @default.
- W4366201247 hasConcept C77088390 @default.
- W4366201247 hasConceptScore W4366201247C100776233 @default.
- W4366201247 hasConceptScore W4366201247C107551265 @default.