Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366206829> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4366206829 endingPage "7" @default.
- W4366206829 startingPage "1" @default.
- W4366206829 abstract "Urban subsurface infrastructures, e.g., pipelines and roads, are aging with the expansion of modern cities. Benefiting from the capability of nondestructive detection, ground penetrating radar (GPR) has been widely applied to underground objects or disasters detection, and GPR B-scan images are employed by manual interpretation. While, this way of high subjectivity and uncertainty inevitably results in failure of detection. Meanwhile, the shortage of labelled images greatly impedes the automatization and intelligentization of underground disaster detection based on GPR. Many data simulation techniques, e.g., forward modelling, were used to augment images for training; however, the generated forward images were not similar enough to the real B-scan data, which makes recognition a challenging task. To address this problem, we proposed a novel B-scan image simulation method based on generative adversarial network to generate synthetic images for training detection networks. Our network utilizes DenseNet as the backbone network of generator to extract image features, and a weighted total variation regularization term to regularize the loss function of the network. The comparison and ablation experiments verified that our network could generate simulation images with high similarity to real GPR B-scan images. We believe that this work contributes to the intelligent processing and analysis of GPR data, and improves the efficiency of underground disaster detection." @default.
- W4366206829 created "2023-04-19" @default.
- W4366206829 creator A5000822972 @default.
- W4366206829 creator A5031383697 @default.
- W4366206829 creator A5081163052 @default.
- W4366206829 date "2023-01-01" @default.
- W4366206829 modified "2023-10-13" @default.
- W4366206829 title "Simulation of GPR B-Scan Data Based on Dense Generative Adversarial Network" @default.
- W4366206829 doi "https://doi.org/10.1109/jstars.2023.3267482" @default.
- W4366206829 hasPublicationYear "2023" @default.
- W4366206829 type Work @default.
- W4366206829 citedByCount "1" @default.
- W4366206829 countsByYear W43662068292023 @default.
- W4366206829 crossrefType "journal-article" @default.
- W4366206829 hasAuthorship W4366206829A5000822972 @default.
- W4366206829 hasAuthorship W4366206829A5031383697 @default.
- W4366206829 hasAuthorship W4366206829A5081163052 @default.
- W4366206829 hasBestOaLocation W43662068291 @default.
- W4366206829 hasConcept C108583219 @default.
- W4366206829 hasConcept C153180895 @default.
- W4366206829 hasConcept C154945302 @default.
- W4366206829 hasConcept C2988773926 @default.
- W4366206829 hasConcept C31972630 @default.
- W4366206829 hasConcept C41008148 @default.
- W4366206829 hasConcept C554190296 @default.
- W4366206829 hasConcept C71813955 @default.
- W4366206829 hasConcept C76155785 @default.
- W4366206829 hasConceptScore W4366206829C108583219 @default.
- W4366206829 hasConceptScore W4366206829C153180895 @default.
- W4366206829 hasConceptScore W4366206829C154945302 @default.
- W4366206829 hasConceptScore W4366206829C2988773926 @default.
- W4366206829 hasConceptScore W4366206829C31972630 @default.
- W4366206829 hasConceptScore W4366206829C41008148 @default.
- W4366206829 hasConceptScore W4366206829C554190296 @default.
- W4366206829 hasConceptScore W4366206829C71813955 @default.
- W4366206829 hasConceptScore W4366206829C76155785 @default.
- W4366206829 hasLocation W43662068291 @default.
- W4366206829 hasOpenAccess W4366206829 @default.
- W4366206829 hasPrimaryLocation W43662068291 @default.
- W4366206829 hasRelatedWork W2503569529 @default.
- W4366206829 hasRelatedWork W2587789887 @default.
- W4366206829 hasRelatedWork W2733060750 @default.
- W4366206829 hasRelatedWork W2738221750 @default.
- W4366206829 hasRelatedWork W2773120646 @default.
- W4366206829 hasRelatedWork W3208028783 @default.
- W4366206829 hasRelatedWork W4211209597 @default.
- W4366206829 hasRelatedWork W4245792239 @default.
- W4366206829 hasRelatedWork W4317987726 @default.
- W4366206829 hasRelatedWork W3108696707 @default.
- W4366206829 isParatext "false" @default.
- W4366206829 isRetracted "false" @default.
- W4366206829 workType "article" @default.